• Title/Summary/Keyword: Salinity error

Search Result 34, Processing Time 0.028 seconds

Accuracy and Error Characteristics of SMOS Sea Surface Salinity in the Seas around Korea

  • Park, Kyung-Ae;Park, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.356-366
    • /
    • 2020
  • The accuracy of satellite-observed sea surface salinity (SSS) was evaluated in comparison with in-situ salinity measurements from ARGO floats and buoys in the seas around the Korean Peninsula, the northwest Pacific, and the global ocean. Differences in satellite SSS and in-situ measurements (SSS errors) indicated characteristic dependences on geolocation, sea surface temperature (SST), and other oceanic and atmospheric conditions. Overall, the root-mean-square (rms) errors of non-averaged SMOS SSSs ranged from approximately 0.8-1.08 psu for each in-situ salinity dataset consisting of ARGO measurements and non-ARGO data from CTD and buoy measurements in both local seas and the ocean. All SMOS SSSs exhibited characteristic negative bias errors at a range of -0.50- -0.10 psu in the global ocean and the northwest Pacific, respectively. Both rms and bias errors increased to 1.07 psu and -0.17 psu, respectively, in the East Sea. An analysis of the SSS errors indicated dependence on the latitude, SST, and wind speed. The differences of SMOS-derived SSSs from in-situ salinity data tended to be amplified at high latitudes (40-60°N) and high sea water salinity. Wind speeds contributed to the underestimation of SMOS salinity with negative bias compared with in-situ salinity measurements. Continuous and extensive validation of satellite-observed salinity in the local seas around Korea should be further investigated for proper use.

Quality Evaluation of Long-Term Shipboard Salinity Data Obtained by NIFS (국립수산과학원 장기 정선 관측 염분 자료의 정확성 평가)

  • PARK, JONGJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.49-61
    • /
    • 2021
  • The repeated shipboard measurements that have been conducted by the National Institute of Fisheries Science (NIFS) for more than a half century, provide the valuable long-term hydrographic data with high spatial-temporal resolution. However, this unprecedent dataset has been rarely used for oceanic climate sciences because of its reliability issue. In this study, temporal variability of salinity error in the NIFS data was quantified by means of extremely small variability of salinity in the deep layer of the south-western East Sea, in order to contribute to studies on long-term variability of the East Sea. The NIFS salinity errors estimated on the isothermal surfaces of 1℃ have a remarkable temporal variation, such as ~0.160 g/kg in the year of 1961~1980, ~0.060 g/kg in 1981~1994,~0.020 g/kg in 1995~2002, and ~0.010 g/kg in 2003~2014 on average, which basically represent bias error. In the recent years, even though the quality of salinity has been improved, there still remain relatively large bias errors in salinity data presumably due to failure of salinity sensor managements, especially in 2011, 2013, and 2014. On the contrary, the salinity in the year of 2012 was very accurate and stable, whose error was estimated as about 0.001 g/kg comparable to the salinity sensor accuracy. Thus, as long as developing proper data quality control procedures and sensor management systems, I expect that the NIFS shipboard hydrographic data could have good enough quality to support various studies on ocean response to climate variabilities. Additionally, a few points to improve the current NIFS shipboard measurements were suggested in the discussion section.

Validation of Satellite SMAP Sea Surface Salinity using Ieodo Ocean Research Station Data (이어도 해양과학기지 자료를 활용한 SMAP 인공위성 염분 검증)

  • Park, Jae-Jin;Park, Kyung-Ae;Kim, Hee-Young;Lee, Eunil;Byun, Do-Seong;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.469-477
    • /
    • 2020
  • Salinity is not only an important variable that determines the density of the ocean but also one of the main parameters representing the global water cycle. Ocean salinity observations have been mainly conducted using ships, Argo floats, and buoys. Since the first satellite salinity was launched in 2009, it is also possible to observe sea surface salinity in the global ocean using satellite salinity data. However, the satellite salinity data contain various errors, it is necessary to validate its accuracy before applying it as research data. In this study, the salinity accuracy between the Soil Moisture Active Passive (SMAP) satellite salinity data and the in-situ salinity data provided by the Ieodo ocean research station was evaluated, and the error characteristics were analyzed from April 2015 to August 2020. As a result, a total of 314 match-up points were produced, and the root mean square error (RMSE) and mean bias of salinity were 1.79 and 0.91 psu, respectively. Overall, the satellite salinity was overestimated compare to the in-situ salinity. Satellite salinity is dependent on various marine environmental factors such as season, sea surface temperature (SST), and wind speed. In summer, the difference between the satellite salinity and the in-situ salinity was less than 0.18 psu. This means that the accuracy of satellite salinity increases at high SST rather than at low SST. This accuracy was affected by the sensitivity of the sensor. Likewise, the error was reduced at wind speeds greater than 5 m s-1. This study suggests that satellite-derived salinity data should be used in coastal areas for limited use by checking if they are suitable for specific research purposes.

Skill Assessments for Evaluating the Performance of the Hydrodynamic Model (해수유동모델 검증을 위한 오차평가방법 비교 연구)

  • Kim, Tae-Yun;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • To evaluate the performance of the hydrodynamic model, we introduced 10 skill assessments that are assorted by two groups: quantitative skill assessments (Absolute Average Error or AAE, Root Mean Squared Error or RMSE, Relative Absolute Average Error or RAAE, Percentage Model Error or PME) and qualitative skill assessments (Correlation Coefficient or CC, Reliability Index or RI, Index of Agreement or IA, Modeling Efficiency or MEF, Cost Function or CF, Coefficient of Residual Mass or CRM). These skill assessments were applied and calculated to evaluate the hydrodynamic modeling at one of Florida estuaries for water level, current, and salinity as comparing measured and simulated values. We found that AAE, RMSE, RAAE, CC, IA, MEF, CF, and CRM are suitable for the error assessment of water level and current, and AAE, RMSE, RAAE, PME, CC, RI, IA, CF, and CRM are good at the salinity error assessment. Quantitative and qualitative skill assessments showed the similar trend in terms of the classification for good and bad performance of model. Furthermore, this paper suggested the criteria of the "good" model performance for water level, current, and salinity. The criteria are RAAE < 10%, CC > 0.95, IA > 0.98, MEF > 0.93, CF < 0.21 for water level, RAAE < 20%, CC > 0.7, IA > 0.8, MEF > 0.5, CF < 0.5 for current, and RAAE < 10%, PME < 10%, CC > 0.9, RI < 1.15, CF < 0.1 for salinity.

Salinity and water level measuring device using fixed type buoyancy (고정식 부력을 이용한 염도 및 수위 측정 방식에 대한 연구)

  • Yang, Seung-Young;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • To make an automated system for a salt field, it is necessary to measure the salinity and water level of the evaporation site. In this paper, a method to simultaneously measure the salinity and water level by measuring the buoyancy forces of two fixed buoyancy bodies is proposed. The proposed measurement method measures the buoyancy of the main part and reference part when the measuring device is immersed in the salty water, and simultaneously measures the salinity and water level through the sum and difference of the two buoyancy forces. Since there is no mechanical movement in the measurement of buoyancy, measurement errors and maintenance needs can be reduced in the mudy environment of salt field. By applying the proposed method, we developed a system that can simultaneously measure salinity and water level remotely at the evaporation site of a salt field. Through a measurement experiment using a reference salty water having various levels of salinity, the results of a salinity error of 0% and a water level error of 2mm were obtained, and the effectiveness of the proposed salinity and water level measuring device was verified. When an automated system is constructed using the developed salinity and water level measuring device, labor reduction, work environment improvement, and productivity improvement are expected.

The Analysis of Soil Salinity in Saemangeum Agricultural Land using Spatial Analysis Method (공간분석 기법을 활용한 새만금 농업용지 토양 염도 분석)

  • KIM, Young-Joo;LEE, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.37-50
    • /
    • 2019
  • In this study, we analyzed the soil salinity of Saemangeum agricultural land using GIS spatial interpolation method. Dominant soils series of experimental sites were Munpo (coarseloamy, mixed, non-acid, mesic, typically fluvaquents), which was based on the fluvio-marine deposit. Soil samples were periodically collected at 0~20cm and 20~40cm layer from each site. First, the distribution characteristics of EC, ESP, and SAR according to spatial interpolation were analyzed using 142 sample points. Through the error analysis of 143 validation points, the IDW method for EC and SAR, and the Kriging interpolation method for ESP were selected as the optimal interpolation method. Using the optimal interpolation method, the characteristics of EC, ESP, and SAR were analyzed for the change of soil salinity from 2014 to 2016. As a result, EC, ESP and SAR were decreased by 0.26mg/L, 5.97mg/L and 0.73mg/L respectively due to the dilution effect caused by rainfall.

Performance of Underwater Communication in Low Salinity Layer at the Western Sea of Jeju (제주도 서부 해역의 저염수층을 고려한 수중통신 성능)

  • Bok, Tae-Hoon;Kim, Ju-Ho;Lee, Chong-Hyun;Bae, Jin-Ho;Paeng, Dong-Guk;Pang, Ig-Chan;Lee, Jong-Kil
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • The sound speed of seawater can be calculated by the empirical formula as a function of temperature, salinity and pressure. It is little affected by salinity because the average salinity is 34 psu and varies within a few psu seasonally and spatially in the ocean. Recently, low-salinity water of 24 psu flows into the western sea area of Jeju Island due to the flood of the Yangtze River in China during summer, affecting sound speed profile. In this paper, it was analyzed how environmental changes affected to the underwater communication - the sound speed of low-salinity water was calculated, and the communication channel was estimated by the simulated acoustic rays while the transmitting and receiving depth and the range were varied with and without the low-salinity layer. And The BER (Bit error rate) was calculated by BPSK(Binary phase shift key) modulation and the effects of the low-salinity water on the BER was investigated. The sound speed profile was changed to have positive slope by the low-salinity layer at the sub-surface up to 20 m of depth, forming acoustic wave propagation channel at the sub-surface resulting in the decrease of most of the BER Consequently, this paper suggests that it is important to consider changes of the ocean environment for correctly analyzing the underwater communication and the detection capability.

Analysis of optimum grid determination of water quality model with 3-D hydrodynamic model using environmental fluid dynamics code (EFDC)

  • Yin, Zhenhao;Seo, Dongil
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.171-179
    • /
    • 2016
  • This study analyzes guidelines to select optimum number of grids to represent behavior of a given water system appropriately. The EFDC model was chosen as a 3-D hydrodynamic and water quality model and salt was chosen as a surrogate variable of pollutant. The model is applied to an artificial canal that receives salt water from coastal area and fresh water from a river from respective gate according to previously developed gate operation rule. Grids are subdivided in vertical and horizontal (longitudinal) directions, respectively until no significant changes are found in salinity concentrations. The optimum grid size was determined by comparing errors in average salt concentrations between a test grid systems against the most complicated grid system. MSE (mean squared error) and MAE (mean absolute error) are used to compare errors. The CFL (Courant-Friedrichs-Lewy) number was used to determine the optimum number of grid systems for the study site though it can be used when explicit numerical method is applied only. This study suggests errors seem acceptable when both MSE and MAE are less than unity approximately.

Prediction model for electric power consumption of seawater desalination based on machine learning by seawater quality change in future (장래 해수수질 변화에 따른 머신러닝 기반 해수담수 전력비 예측 모형 개발)

  • Shim, Kyudae;Ko, Young-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1023-1035
    • /
    • 2021
  • The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the future design of such facilities. Input data from 2003 to 2014 of the Korea Hydrographic and Oceanographic Agency (KHOA) were used, and the structure of the model was determined using the trial and error method to analyze as well as hyperparameters such as salinity and seawater temperature. The future seawater quality was estimated by optimizing the prediction model based on machine learning. Results indicated that the seawater temperature would be similar to the existing pattern, and salinity showed a gradual decrease in the maximum value from the past measurement data. Therefore, it was reviewed that the electricity cost for seawater desalination decreased by approximately 0.80% and a process configuration was determined to be necessary. This study aimed at establishing a machine-learning-based prediction model to predict future water quality changes, reviewed the impact on the scale of seawater desalination facilities, and suggested alternatives.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.