• Title/Summary/Keyword: Salmonella

Search Result 2,511, Processing Time 0.022 seconds

Bioserotype and drug resistance of Salmonella spp isolated from feces in zoo animals (동물원(動物園)의 야생동물(野生動物) 분변(糞便)에서 분리(分離)한 살모넬라균의 생물형(生物型), 혈청형(血淸型) 및 약제내성(藥劑耐性))

  • Youn, En-sun;Park, Seog-gee;Oh, Young-hee;Kim, Tae-jong
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.2
    • /
    • pp.267-273
    • /
    • 1994
  • Feces samples, obtained from zoo animals around Seoul, were examined for the isolation of Salmonella species, bioserotype and drug resistance for the prevention and treatment of salmonellosis, Salmonella spp were isolated 19(4.7%) from 408 samples of zoo animals. The subspecies in 19 Salmonella were all subspecies 1. The serological identification of Salmonella isolated were 31.6% in Sal typhimurium, 26.3% in Sal hadar, 21.1% in Sal muenchen, 15.8% in Sal enteritidis and 5.3% in Sal ayinde. The antibiotic resistance of Salmonella isolated were 13(68.4%) strains. The multiple resistant patterns of antibiotics in Salmonella were 2 drugs- and 3 drugs-resistance 30.8% respectively. The transferred rate of resistance to recipients(E coli ML 1410 $NA^r$) in Salmonella was 38.5%.

  • PDF

A Study on Bioserotype and Drug Resistance of Salmonella and Escherichia coli Isolated from Feces in Zoological Animals (동물원의 야생동물 분변에서 분리한 살모넬라균과 대장균의 생물형, 혈청형 및 약제내성에 관한 연구)

  • 윤은선;박석기;문현칠;최원식
    • Korean Journal of Veterinary Service
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 1993
  • This study was undertaken the bioserotype and drug resistance of Salmonella and Escherichia coli isolated from feces for the prevention and treatment of salmonellosis and colibacillosis in zoological animals. The results obtained from the research were as follows 1. Salmonella were isolated 19, or 4.7% from 408 samples and E. coli were isolated 12, or 40.0% from 30 diarrheal samples. 2. The biotypes in 19 Salmonella were Subspecies 1. 3. The serogroups of Salmonella isolated were 47.4% in B group, 31.6% in C, 5.3% in D and 15.8% in other, and serotype of E. coli was 100% in 0127a. 4. The antibiotic resistance of Salmonella and E. coli isolated were 13, or 68.4% and 7, or 58.3% strains, respectively 5. The multiple resistant patterns of antibiotics in Salmonella were 2drugs- and 3 drugs-resistance 30.8%, respectively, and those in E. coli were mono drug-, 2 drugs- and 7 drugs-resistance 28.6%, respectively. 6. The transferred rate of resistance to recipients (E. coli ML 1410 NA$^{r}$ ) in Salmonella was 38.5%, but that in E. coli was 71.4%.

  • PDF

Production and Characterization of Egg Yolk Antibodies (IgY) against Flagella Antigen of Salmonella sp. (살모넬라 편모 항원에 대한 난황항체(IgY)의 생산 및 특성)

  • 신순오;김도균;양시용;안태영;김정우
    • Korean Journal of Poultry Science
    • /
    • v.30 no.3
    • /
    • pp.191-196
    • /
    • 2003
  • Egg yolk antibodies(IgY) from laying hens immunized with antigens from Salmonella choleraesuis, Salmonella typhimurium and Salmonella dublin were produced. The Antigenic proteins isolated from those flagella of Salmonella sp., determined by SDS-PAGE, were pure and had a molecular mass of approximately 53.4, 51 and 54.6 kDa, respectively. The IgY titers were found at two weeks after first immunization and increased gradually to maximum of 330,000 300,000 and 440,000 respectively. According to the results of specificity test by ELISA, the IgY raised against Salmonella sp. were found highly specific activity levels. Concentration of Salmonella sp. incubated with anti-Salmonella sp. IgY were drastically reduced to the levels of 2.8∼4.0 log CFU/ml. The contents of IgY in an egg yolk was approximately 31∼33 mg/ml.

Rapid Detection of Salmonella spp. by Antibody-Immobilized Piezoelectric Crystal Biosensor (고정화법을 달리하여 제조한 압전류적 항체 센서에 의한 Salmonella spp.의 신속 검출)

  • 박인선;김우연;김남수
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.3
    • /
    • pp.206-212
    • /
    • 1998
  • An improved antibody-coated sensor system based on quartz crystal microbalance was developed for the detection of Salmonella spp. An antibody against Salmonella common structural antigen was immobilized onto one gold electrode of the piezoelectric quartz crystal surface by various immobilization procedures. The best results in sensitivity and stability were obtained with the thin layers of protein A and 3,3'-dithiopropionimidate.2HCI(DTBP), a homobifunctional thiol-cleavable crosslinker. After the addition of a S. typhimurium suspension into a reaction cell with 0.1 M sodium phosphate buffer, pH 7.2, the resonant frequency owing to S. typhimurium adsorption decreased conspicuously. The antibody-immobilized crystals prepared by the gold-protein A complex formation and DTBP thiolation showed the frequency shifts of 80 and 283 Hz, respectively. The time required for maximum frequency shift was about 30~60 min. The antibody-coated crystal could be reused for 6~8 consecutive assays.

  • PDF

Development and Validation of Predictive Model for Salmonella Growth in Unpasteurized Liquid Eggs

  • Kim, Young-Jo;Moon, Hye-Jin;Lee, Soo-Kyoung;Song, Bo-Ra;Lim, Jong-Soo;Heo, Eun-Jeong;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.442-450
    • /
    • 2018
  • Liquid egg products can be contaminated with Salmonella spp. during processing. A predictive model for the growth of Salmonella spp. in unpasteurized liquid eggs was developed and validated. Liquid whole egg, liquid yolk, and liquid egg white samples were prepared and inoculated with Salmonella mixture (approximately 3 Log CFU/mL) containing five serovars (S. Bareilly, S. Richmond, S. Typhimurium monophasic, S. Enteritidis, and S. Gallinarum). Salmonella growth data at isothermal temperatures (5, 10, 15, 20, 25, 30, 35, and $40^{\circ}C$) was collected by 960 h. The population of Salmonella in liquid whole egg and egg yolk increased at above $10^{\circ}C$, while Salmonella in egg white did not proliferate at all temperature. These results demonstrate that there is a difference in the growth of Salmonella depending on the types of liquid eggs (egg yolk, egg white, liquid whole egg) and storage temperature. To fit the growth data of Salmonella in liquid whole egg and egg yolk, Baranyi model was used as the primary model and the maximum growth rate and lag phase duration for each temperature were determined. A secondary model was developed with maximum growth rate as a function of temperature. The model performance measures, bias factor ($B_f$, 0.96-0.99) and $r^2$ (0.96-0.99) indicated good fit for both primary and secondary models. In conclusion, it is thought that the growth model can be used usefully to predict Salmonella spp. growth in various types of unpasteurized liquid eggs when those are exposed to various temperature and time conditions during the processing.

Rapid Detection of Salmonella Species in Foods Using PCR (PCR을 이용한 식품 내 Salmonella 균주의 신속 검출방법)

  • Jung, Sang-Hun;Kim, Myo-Young;Kim, Hyun-Joong;Kim, Tae-Woon;Ryu, Sang-Ryeol;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.225-228
    • /
    • 2003
  • This study was carried out to investigate the simple and rapid detection of Salmonella species in different kinds of food using PCR method. The specific primer sets (SIN1 and SIN2) was designed and utilized to amplify a 617 bp DNA fragment from salmonella species. The sensitivity of PCR was 1 pg of purified template DNA or $10^2$ cells from pure culture. The detection limit of Salmonella typhimurium on agarose gel electrophoresis was $10^3{\sim}10^4$ cells/g in the artificially contaminated food samples. These results suggested that this simple method could be applied to industrial fields for detection of Salmonella species in food.

Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce

  • Park, Sojung;Nam, Eun woo;Kim, Yeeun;Lee, Seohyeon;Kim, Seul I;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1729-1738
    • /
    • 2020
  • Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.

Rapid and Sensitive Detection of Salmonella in Chickens Using Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Dipstick

  • Liu, Zhi-Ke;Zhang, Qiu-Yu;Yang, Ning-Ning;Xu, Ming-Guo;Xu, Jin-Feng;Jing, Ming-Long;Wu, Wen-Xing;Lu, Ya-Dong;Shi, Feng;Chen, Chuang-Fu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.454-464
    • /
    • 2019
  • Salmonellosis is a highly contagious bacterial disease that threatens both human and poultry health. Tests that can detect Salmonella in the field are urgently required to facilitate disease control and for epidemiological investigations. Here, we combined loop-mediated isothermal amplification (LAMP) with a chromatographic lateral flow dipstick (LFD) to rapidly and accurately detect Salmonella. LAMP primers were designed to target the Salmonella invA gene. LAMP conditions were optimized by adjusting the ratio of inner to outer primers, $MgSO_4$ concentration, dNTP mix concentration, amplification temperature, and amplification time. We evaluated the specificity of our novel LAMP-LFD method using six Salmonella species and six related non-Salmonella strains. All six of the Salmonella strains, but none of the non-Salmonella strains, were amplified. LAMP-LFD was sensitive enough to detect concentrations of Salmonella enterica subsp. enterica serovar Pullorum genomic DNA as low as $89fg/{\mu}l$, which is 1,000 times more sensitive than conventional PCR. When artificially contaminated feed samples were analyzed, LAMP-LFD was also more sensitive than PCR. Finally, LAMP-LFD gave no false positives across 350 chicken anal swabs. Therefore, our novel LAMP-LFD assay was highly sensitive, specific, convenient, and fast, making it a valuable tool for the early diagnosis and monitoring of Salmonella infection in chickens.

High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella

  • KyeongHye, Won;Dohyun, Kim;Donghyun, Shin;Jin, Hur;Hak-Kyo, Lee;Jaeyoung, Heo;Jae-Don, Oh
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1144-1172
    • /
    • 2022
  • Salmonella enterica serovar Typhimurium isolate HJL777 is a virulent bacterial strain in pigs. The high rate of salmonella infection are at high risk of non-typhoidal salmonella gastroenteritis development. Salmonellosis is most common in young pigs. We investigated changes in gut microbiota and biological function in piglets infected with salmonella via analysis of rectal fecal metagenome and intestinal transcriptome using 16S rRNA and RNA sequencing. We identified a decrease in Bacteroides and increase in harmful bacteria such as Spirochaetes and Proteobacteria by microbial community analysis. We predicted that reduction of Bacteroides by salmonella infection causes proliferation of salmonella and harmful bacteria that can cause an intestinal inflammatory response. Functional profiling of microbial communities in piglets with salmonella infection showed increasing lipid metabolism associated with proliferation of harmful bacteria and inflammatory responses. Transcriptome analysis identified 31 differentially expressed genes. Using gene ontology and Innate Immune Database analysis, we identified that BGN, DCN, ZFPM2 and BPI genes were involved in extracellular and immune mechanisms, specifically salmonella adhesion to host cells and inflammatory responses during infection. We confirmed alterations in gut microbiota and biological function during salmonella infection in piglets. Our findings will help prevent disease and improve productivity in the swine industry.

Detection of invA and spvC in Salmonella spp. isolated from duck farms (오리 농장에서 분리한 Salmonella속 균에서 invA 및 spvC gene의 검출)

  • Cho, Jae-Keun
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.4
    • /
    • pp.341-344
    • /
    • 2010
  • Poultry and poultry products have been implicated as a major source of Salmonella infection in human, and infection due to Salmonella serotypes continue to be a major health problem. The presence of two virulence genes, invA and spvC, in 34 Salmonella isolates obtained from duck farms was investigated. All isolates contained the invA gene, and spvC gene was found in 20 (58.8%) of 34 Salmonella isolates : S. Typhimurium (n=8), S. Fyris (n=5), S. Enteritidis (n=3), S. Typhimurium var. copenhagen (n=1), S. Haardt (n=1) and S. Mbandaka (n=1). This study showed the presence of the spvC gene was widely distributed in between different Salmonella enterica isolates.