• Title/Summary/Keyword: Salmonella

Search Result 2,516, Processing Time 0.029 seconds

Protective effects of Bacillus subtilis against Salmonella infection in the microbiome of Hy-Line Brown layers

  • Oh, Ju Kyoung;Pajarillo, Edward Alain B.;Chae, Jong Pyo;Kim, In Ho;Kang, Dae-Kyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1332-1339
    • /
    • 2017
  • Objective: This study investigated the effects of Bacillus subtilis CSL2 (B. subtilis CSL2) administration before Salmonella challenge on the fecal microbiota and microbial functionality of Hy-line Brown (HLB) laying hens. Methods: Fecal samples were collected from control (CON), Salmonella-infected (SAL) and Salmonella-infected, probiotic-treated (PRO) groups before and after Salmonella challenge for microbiome analysis using 16S rRNA gene pyrosequencing. Results: Infection with Salmonella led to decreased microbial diversity in hen feces; diversity was recovered with Bacillus administration. In addition, Salmonella infection triggered significant alterations in the composition of the fecal microbiota. The abundance of the phylum Firmicutes decreased while that of Proteobacteria, which includes a wide variety of pathogens, increased significantly. Bacillus administration resulted in normal levels of abundance of Firmicutes and Proteobacteria. Analysis of bacterial genera showed that Salmonella challenge decreased the population of Lactobacillus, the most abundant genus, and increased populations of Pseudomonas and Flavobacterium genera by a factor of 3 to 5. On the other hand, Bacillus administration caused the abundance of the Lactobacillus genus to recover to control levels and decreased the population of Pseudomonas significantly. Further analysis of operational taxonomic units revealed a high abundance of genes associated with two-component systems and secretion systems in the SAL group, whereas the PRO group had more genes associated with ribosomes. Conclusion: The results of this study indicate that B. subtilis CSL2 administration can modulate the microbiota in HLB laying hens, potentially acting as a probiotic to protect against Salmonella Gallinarum infection.

Risk Assessment for Salmonellosis in Chicken in South Korea: The Effect of Salmonella Concentration in Chicken at Retail

  • Jeong, Jaewoon;Chon, Jung-Whan;Kim, Hyunsook;Song, Kwang-Young;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.1043-1054
    • /
    • 2018
  • Salmonellosis caused by chicken consumption has been a critical issue in food safety worldwide, including in Korea. The probability of illness from consumption of chicken was simulated in study, based on the recipe of Dakgalbi, a commonly eaten chicken dish in Korea. Additionally, the processing stage at slaughterhouses to decrease Salmonella concentration in broilers was modeled to explore its effect on the likelihood of illness. A Monte Carlo simulation model was created using @RISK. Prevalence of Salmonella in chickens at the retail stage was found to be predominantly important in determining the probability of illness. Other than the prevalence, cooking temperature was found to have the largest impact on the probability of illness. The results also demonstrated that, although chlorination is a powerful tool for decreasing the Salmonella concentration in chicken, this effect did not last long and was negated by the following stages. This study analyzes the effects of variables of the retail-to-table pathway on the likelihood of salmonellosis in broiler consumption, and also evaluates the processing step used to decrease the contamination level of Salmonella in broilers at slaughterhouses. According to the results, we suggest that methods to decrease the contamination level of Salmonella such as chlorination had little effect on decreasing the probability of illness. Overall, these results suggest that preventing contamination of broiler with Salmonella must be a top priority and that methods to reduce the concentration of Salmonella in broilers at slaughterhouses hardly contribute to safe consumption of Salmonella-contaminated chicken.

Analysis of antimicrobial resistance and PFGE patterns of Salmonella spp. isolated from chickens at slaughterhouse in Incheon area (인천지역 닭 도축장에서 분리된 Salmonella spp.의 항생제 내성 및 PFGE 패턴분석)

  • Yang, Ha-Young;Lee, Sung-Mo;Park, Eun-Jeong;Kim, Jung-Hee;Lee, Jung-Goo
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.325-334
    • /
    • 2009
  • Salmonella spp. are the important pathogens both economically and clinically in animals as well as human. Some of them have highly zoonotic potentials even though they are asymptomatic in animals. Therefore, the prevalence of Salmonella spp. in animals is highly concerned for human health. The present study was carried out to investigate the prevalence, antimicrobial resistance and PFGE patterns of Salmonella spp. isolated from chickens at slaughterhouse in Incheon area. The overall isolation rate of Salmonella spp. from cloaca and cecum specimens was 7.3 % (37/510). Thirty seven isolates of Salmonella spp. were identified to 5 serotypes; S. Enteritidis, S. Newport, S. Typhimurium, S. Gallinarum, and S. Derby with prevalence of 46.0%, 40.5%, 8.1%, 2.7%, and 2.7%, respectively. Resistance to nalidixic acid was found in 97.3% of Salmonella spp. isolated, followed by streptomycin (16.2%), tetracycline (16.2%), ampicillin (5.4%). Only 6 isolates (16.2%) showed resistance to more than two antimicrobials. In PFGE analysis of chicken and human isolates with Xba I, S. Enteritidis isolates from chicken showed very high similarity over 82.8% and also the similarity was very high in the comparison with human isolates. However, the higher similarity (100%) was observed among chicken isolates of S. Typhimurium. These results suggest the close genetic relatedness of Salmonella spp. isolated from chickens with human.

젖당과 사멸 살모넬라 함유 사료가 Salmonella typhimurium 인공 감염 육계 병아리의 생산성과 면역 반응에 미치는 영향

  • Choe, Jun-Yeong;Im, Jin-Taek;Park, In-Gyeong;Choe, Do-Yeol;Lee, Hye-Jeong;Lee, Beom-Gyu;Go, Tae-Song
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.78-79
    • /
    • 2005
  • Effects of dietary lactose or killed Salmonella on the performance, immune response and anti-oxidant system was studied in chicks innoculated with Salmonella typhimurium. In 27 days of age broiler, dietary lactose decreased performance, while dietary lactose and killed Salmonella elevated plasma peroxidase activity and IL-1 level in supernatant of PBMC stimulated with LPS. When broiler chicks innoculated with Salmonella, performance, activities of erythrocyte MnSOD and plasma peroxidase were enhanced after 7 days of the innoculation. Dietary lactose and killed Salmonella increased activity of erythrocyte MnSOD, plasma peroxidase, proliferation of PBMC stimulated with LPS and IL-1 level in the supernatant after 15 days of the innoculation. The result indicated that dietary lactose and killed Salmonella have modulated innate immune response and antioxidant system in broiler chicks innoculated with Salmonella typhimurium.

  • PDF

Detection of Salmonella species by polymerase chain reaction (Polymerase chain reaction에 의한 Salmonella 속균의 검출)

  • Park, Doo-hee;Kim, Won-yong;Kim, Chul-joong;Mah, Jum-sool
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.115-125
    • /
    • 1994
  • In this study, we try to establish the rapid and specific detection system for Salmonella species. The PhoE gene of Salmonella species was amplified with two specific primers, ST5 and ST8c, using PCR. The probe prepared from the amplified PhoE gene was sequenced and applied for Southern blot analysis. After PCR with ST5 and ST8c primers for PhoE gene, DNA bands of expected size(365bp) from 7 different Salmonella species were detected, but not from 12 enterobacteriaceae and 3 gram positive bacteria. PCR was highly sensitive to detect up to 10fg of purified DNA template and to identify Salmonella species with only 320 heat-lysed bacterial cells. The inhibition of PCR amplification from stool specimen was occurred with 50-fold dilution but disappeared over 100 fold dilution of samples. It was confirmed that the PhoE genes were amplified and cloned with over 97% nacleotide sequence homology of PCR products compared with that of S. typhfmurium LT2. The DNA probe derived from S. typhimurium TA 3,000 showed highly specific and sensitive reaction with PCR products of all tested Salmonella species. These results indicate that PCR was rapid and sensitive detection method for Salmonella species and DNA probe prepared from S. typhimurium TA 3,000 was specific to identify PCR products of different Salmonella species.

  • PDF

Application of SYBR Green real-time PCR assay for the specific detection of Salmonella spp. (Salmonella spp. 특이적인 검출을 위한 SYBR Green real-time PCR 기법 적용)

  • Shin, Seung Won;Cha, Seung Bin;Lee, Won-Jung;Shin, Min-Kyoung;Jung, Myunghwan;Yoo, Anna;Jung, Byeng Yeal;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.25-28
    • /
    • 2013
  • The aim of this study was to applicate and evaluate a SYBR Green real-time PCR for the specific detection of Salmonella spp. Specificity of the PCR method was confirmed with 48 Salmonella spp. and 5 non-Salmonella strains using invA gene primer. The average threshold cycle ($C_T$) of Salmonella spp. was $11.83{\pm}0.78$ while non-Salmonella spp. was $30.86{\pm}1.19$. Correlation coefficients of standard curves constructed using $C_T$ versus copy number of Salmonella Enteritidis ATCC 13076 showed good linearity ($R^2=0.993$; slope = 3.563). Minimum level of detection with the method was > $10^2$ colony forming units (CFU)/mL. These results suggested that the SYBR Green real-time PCR might be applicable for the specific detection of Salmonella spp. isolates.

Serotype Distribution and Virulence Profile of Salmonella enterica Serovars Isolated from Food Animals and Humans in Lagos Nigeria

  • Abraham, Ajayi;Stella, Smith;Ibidunni, Bode-Sojobi;Coulibaly, Kalpy Julien;Funbi, Jolaiya Tolulope;Isaac, Adeleye Adeyemi
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.310-316
    • /
    • 2019
  • Distribution of Salmonella enterica serovars and their associated virulence determinants is wide-spread among food animals, which are continuously implicated in periodic salmonellosis outbreaks globally. The aim of this study was to determine and evaluate the diversity of five Salmonella serovar virulence genes (invA, pefA, cdtB, spvC and iroN) isolated from food animals and humans. Using standard microbiological techniques, Salmonella spp. were isolated from the feces of humans and three major food animals. Virulence determinants of the isolates were assayed using PCR. Clonal relatedness of the dominant serovar was determined via pulsed-field gel electrophoresis (PFGE) using the restriction enzyme, Xbal. Seventy one Salmonella spp. were isolated and serotyped into 44 serovars. Non-typhoidal Salmonella (NTS; 68) accounted for majority (95.8%) of the Salmonella serovars. Isolates from chicken (34) accounted for 47.9% of all isolates, out of which S. Budapest (14) was predominant (34.8%). However, the dominant S. Budapest serovars showed no genetic relatedness. The invA gene located on SPI-1 was detected in all isolates. Furthermore, 94% of the isolates from sheep harbored the spvC genes. The iroN gene was present in 50%, 100%, 88%, and 91% of isolates from human, chicken, sheep, and cattle, respectively. The pefA gene was detected in 18 isolates from chicken and a single isolate from sheep. Notably, having diverse Salmonella serovars containing plasmid encoded virulence genes circulating the food chain is of public health significance; hence, surveillance is required.

Prevalence and antimicrobial resistance of Salmonella spp. isolated from duck farms in Jeollanam-do Province, South Korea

  • Sin-Wook Park;Keon Kim;Chang-Yun Je;Chang-Hyeon Choi;Sang-Gyue Choi;Jong-Soo Lim;Ok-Mi Jeong;Guk-Hyun Suh;Chang-Min Lee
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.3
    • /
    • pp.211-218
    • /
    • 2023
  • This study was carried out to investigate the prevalence and antimicrobial resistance of Salmonella serotypes in duck farms of Jeollanam-do Province, South Korea. A total of 1112 samples (breeder ducks, 286; broiler ducks, 826) were collected from 196 duck farms (breeder duck farms, 25; broiler duck farms, 171) between January 2018 and November 2019. The total prevalence of Salmonella serotypes was 45.4% (89/196) in the duck farms, with no significant difference between prevalence in breeder and broiler duck farms (48% and 45%, respectively; P>0.05). The most prevalent serotype among the 127 Salmonella isolates was Salmonella Typhimurium (20.5%) followed by Salmonella Albany (17.3%), Salmonella Hadar (15.7%), and Salmonella Enteritidis (11.8%). Maximum resistance was observed against penicillin (78.74%), followed by tetracycline (68.50%), and kanamycin (65.35%). Of the 127 isolates, 117 (92.13%) were resistant to ≥3 antimicrobials and 2 to all 18 antimicrobials. Our results demonstrate the presence of Salmonella strains and their resistance to multiple antimicrobials, thus indicating a public health concern in South Korea. The emergence of Salmonella stains that are resistant to multiple drugs highlight the need for careful use of antimicrobials in duck farms.

Virulence gene profiles and antimicrobial susceptibility of Salmonella Brancaster from chicken

  • Evie Khoo ;Roseliza Roslee ;Zunita Zakaria;Nur Indah Ahmad
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.82.1-82.12
    • /
    • 2023
  • Background: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years. Objective: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia. Methods: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s). Results: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3")-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected. Conclusion: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.

Quantitative risk assessment of foodborne Salmonella illness by estimating cooking effect on eggs from retail markets

  • Hyemin Oh;Yohan Yoon;Jang Won Yoon;Se-Wook Oh;Soomin Lee;Heeyoung Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1024-1039
    • /
    • 2023
  • In this study, we performed a quantitative microbial risk assessment (QMRA) of Salmonella through intake of egg consumption after cooking (dry-heat, moist-heat, and raw consumption). Egg samples (n = 201) from retail markets were analyzed for the presence of Salmonella. In addition, temperature and time were investigated during egg transit, storage, and display. A predictive model was developed to characterize the kinetic behavior of Salmonella in eggs, and data on egg consumption and frequency were collected. Eventually, the data was simulated to estimate egg-related foodborne illnesses. Salmonella was not found in any of the 201 egg samples. Thus, the estimated initial contamination level was -4.0 Log CFU/g. With R2 values of 0.898 and 0.922, the constructed predictive models were adequate for describing the fate of Salmonella in eggs throughout distribution and storage. Eggs were consumed raw (1.5%, 39.2 g), dry-heated (57.5%, 43.0 g), and moist-heated (41%, 36.1 g). The probability of foodborne Salmonella illness from the consumption of cooked eggs was evaluated to be 6.8×10-10. Additionally, the probability of foodborne illness not applied cooking methods was 1.9×10-7, indicating that Salmonella can be reduced by cooking. Therefore, the risk of Salmonella infection through consumption of eggs after cooking might be low in S. Korea.