• Title/Summary/Keyword: Salmonella enterica serovar Typhimurium

Search Result 73, Processing Time 0.033 seconds

Modulation of Humoral and Cell-Mediated Immunity Against Avian Influenza and Newcastle Disease Vaccines by Oral Administration of Salmonella enterica Serovar Typhimurium Expressing Chicken Interleukin-18

  • Rahman, Md Masudur;Uyangaa, Erdenebileg;Eo, Seong Kug
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2013
  • Interleukin-18 (IL-18) has been known to induce interferon-${\gamma}$ (IFN-${\gamma}$) production and promote Th1 immunity. Although mammalian IL-18 has been characterized in great detail, the properties and application of chicken IL-18 remain largely uninvestigated as of yet. In this study, we evaluated the immunomodulatory properties of Salmonella enterica serovar Typhimurium expressing chicken interleukin-18 (chIL-18) on immune responses induced by avian influenza (AI) and Newcastle disease (ND) vaccines. After oral administration of S. enterica serovar Typhimurium expressing chIL-18, chickens were vaccinated intramuscularly with the recommended dose of either inactivated AI H9N2 vaccine or ND (B1 strain) vaccine. Chickens receiving a primary vaccination were boosted using the same protocol 7 days later. Humoral and cell-mediated immune responses were evaluated in terms of HI antibody titers and proliferation and mRNA expression of IFN-${\gamma}$ and IL-4 of peripheral blood mononuclear cells (PBMC) in response to specific antigen stimulation. According to our results, oral administration of S. enterica serovar Typhimurium expressing chIL-18 induced enhanced humoral and Th1-biased cell-mediated immunity against AI and ND vaccines, compared to that of chickens received S. enterica serovar Typhimurium harboring empty vector. Therefore, we conclude that our proposed vaccination regimen using inactivated AI and ND viruses along with oral administration of S. enterica serovar Typhimurium expressing chIL-18 may provide a novel approach in protecting chicken from currently circulating AI and ND virus strains.

Safety and Immunogenicity of Salmonella enterica Serovar Typhimurium llaB in Mice

  • CHO SUN-A;LEE IN-SOO;PARK JONG-HWAN;SEOK SEUNG-HYEOK;LEE HUI-YOUNG;KIM DONG-JAE;BACK MIN-WON;LEE SEOK-HO;HUR SOOK-JIN;BAN SANG-JA;LEE YOO-KYOUNG;PARK JAE-HAK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.609-615
    • /
    • 2005
  • The safety and immunogenicity of an attenuated recombinant Salmonella vaccine strain, Salmonella enterica serovar Typhimurium llaB, was assessed. This vaccine strain could survive in low pH condition, and its ability of intracellular survival did not differ from that of S. enterica serovar Typhimurium UK1, which is the wild-type of the vaccine strain. The mortality of the mice orally administered with the vaccine strain was $50\%$ at the dose of $10^7$ CFU. All mice administered with $10^5\;or\;10^3$ CFU of the vaccine strain survived for 3 days postinoculation (pi). However, all mice administered with more than $10^3$ CFU of the vaccine strain died within 3 days pi. To examine the protective effect of the vaccine strain, mice were orally immunized with $10^4\;and\;10^6$ CFU of the bacteria. Control mice were given with 0.5 ml of phosphate buffered saline (PBS). After 8 days, the mice were challenged with $10^9$ CFU of S. enterica serovar Typhimurium UK1, and mortality was examined for 5 days. The survival rates of the mice immunized with $10^4\;and\;10^6$ CFU of the vaccine strain were $60\%\;and\;80\%$, respectively, whereas all control mice died within 2 days after challenging. To investigate the immunogenicity of S. enterica serovar Typhimurium llaB, mice were orally immunized with $10^5\;or\;10^6$ CFU ml of the vaccine strain. Five mice of each group were sacrificed at 5 and 12 days after immunization, and results showed that immunization of the vaccine strain led to increases of IgG1, IgG2, and IgM titers against S. enterica serovar Typhimurium UK1 in mouse sera, cytokine expressions such as IL-2, IL-4, IL-6, and IL-10 in spleen, and the lymphocyte proliferation response to mitogens (concanavalin A or LPS) stimulation.

Comparison of tdcA Expression Between Escherichia coli and Salmonella enterica Serovar Typhimurium

  • Kim, Min-Jeong;Lim, Sang-Yong;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.252-255
    • /
    • 2011
  • Both Escherichia coli (E. coli) and Salmonella enterica serovar Typhimurium (S. Typhimurium) have a tdc operon that encodes enzymes involved in a metabolic pathway for the degradation of L-serine and L-threonine. However, S. Typhimurium does not have the tdcR gene, which is a positive regulator in E. coli. In the present study, transcriptional analysis revealed that tdcA expression in E. coli is higher under anaerobic than aerobic growth conditions, but the opposite is true in S. Typhimurium. Interestingly, a tdcR mutant strain of E. coli showed a similar expression pattern to that observed in S. Typhimurium and was also induced by anaerobic shock. These results suggest that the induction of tdcA expression by anaerobic conditions is observable when tdcA expression is low owing to the absence of TdcR.

Characterization of Multidrug-resistant Salmonella enterica Serovar Typhimurium Isolated from Swine Sources

  • Suh Dong Kyun;Song Jae Chan
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2005
  • A total of 28 Salmonella enterica serovar Typhimurium isolated from diseased pigs and swine carcasses between 2001 and 2003 were characterized by the antimicrobial resistance profiles, PCR for detection of S. Typhimurium DT104 and pulsed-field gel electrophoresis (PFGE) with the restriction enzyme XbaI. All but one isolate presented multidrug resistance (MDR) to more than two antibiotics tested. A total of 11 resistance profiles were observed, and two phenotypes, ST and ASSuTG, were the most common among them. Two isolates were found to be S. Typhimurium DT104 isolates by PCR, and their resistance profile did not show the DT104 typical resistance type ACSSuT, but ACSSuTGK instead. PFGE identified 11 banding patterns in dendrogram, and three main clusters (designated A to C) were represented. Interestingly, sixteen of 19S. Typhimurium isolates belonging to cluster B showed an identical band pattern.

  • PDF

Proteome analysis between diverse phenotypes of Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium)

  • Shin, Gee-Wook;Cha, In-Seok;Lee, Woo-Won;Nho, Seong-Won;Park, Seong-Bin;Jang, Ho-Bin;Kim, Yong-Hwan;Jung, Tae-Sung
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.4
    • /
    • pp.285-295
    • /
    • 2010
  • Protein expression patterns in Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) strains with diverse phenotypes, such as phage type, antibiotic resistance pattern and plasmid profiles were examined. For detailed analysis of proteins expressed by different S. Typhimurium strains, protein fractions were divided into detergent-rich phase (DP) and aqueous phase (AP) using triton X-114 detergent. The two phases were subjected to two-dimensional gel electrophoresis (2-DE), followed by protein identification using peptide mass fingerprinting (PMF). In the results, PMF showed that DP fractions consisted mainly of outer membrane proteins, whereas the AP fractions included cytosolic proteins. Comparison of 2-DE profiles of DP did not show any distinct protein spots which could be correlated with phage type, antibiotic resistance pattern or plasmid profile. However, comparisons of 2-DE profiles of the AP revealed differences in the protein spots, which could be correlated with the plasmid profile and phage types. Among these protein spots, flagellin was specific for strains containing a 90 kb plasmid. Compared to DT193 phage type, three protein spots in the range of pI 5.0-5.5 and MW 8-15 kDa of AP 2-DE profiles were absent in the DT104 phage types. Additionally, a protein spot with PI in the range of 4.5-5.0 and molecular weight (MW) between 51-69 kDa was specific for phage type DT104, while a protein spot with pI in the range of 4.0-4.8 and MW between 18-20 kDa was specific for DT193 phage type. These protein spots may be useful for discriminating phage types of S. Typhimurium.

Protective effects of mix-crude outer membrane protein Salmonella vaccine against salmonellosis in chickens and pigs (살모넬라 세포외막단백질 혼합백신을 이용한 돼지 및 닭에서의 살모넬라균감염증 방어효과)

  • Lee, Hee-Soo;Lim, Suk-Kyung;Cho, Yun-Sang;Joo, Yi-Seok;Kim, Jae-Hak;Kim, Jong-Man
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.147-155
    • /
    • 2007
  • We investigated the safety, immunogenicity and protectivity of mix-crude outer membrane protein (cOMP) vaccine against salmonellosis in animals. The mix-cOMP vaccine was extracted from Salmonella enterica serovar Typhimurium (ST) and Salmonella enterica serovar Enteritidis (SE) and Salmonella enterica serovar Braenderup (SB) isolated from pigs. The mix-cOMP vaccine gave significantly higher antibody response than ST-bacterin and ST-cOMP vaccine in guinea pigs. The survival rates of mix-cOMP vaccinated groups showed significantly higher (100%) than those (0-20%) of unvaccinated control group, challenged with 3 species of Salmonella (ST, SE and SB) in mice. Vaccinated groups in pigs showed reduction of clinical signs, increase of average weight gains, decrease of bacterial recovery rates, compared with unvaccinated groups. Especially, the survival rates (100%) of vaccinated groups in chickens showed higher than that (0%) of unvaccinated group. Based on these results, we suggest that the mix-cOMP Salmonella vaccine developed in this study will be effective for the protection against Salmonellosis caused by the various serotypes Salmonella species in animals.

Induced Autophagy Regulates Salmonella enterica serovar Typhimurium Infection in Murine Macrophage (쥐의 큰포식세포주에서 자가포식현상에 의한 Salmonella enterica serovar Typhimurium의 감염 조절)

  • Lee, Sunhye;Kim, Ju-Young;Lee, Hyo-Ji;Jung, Yu-Jin
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Autophagy is one of the lysosomal degradation pathways to maintain cellular homeostasis. The damaged proteins or organelles are uptaken through extra- and intra-cellular stress, starvation and infected pathogens, subsequently, autophagosomes are fused with lysosomes to break down the molecules. Salmonella enterica serovar Typhimurium (S. Typhimurium), intracellular bacteria, cause acute gastroenteritis and food poisoning. Given that autophagy induced by S. Typhimurium plays an important role in the cells to control the infection, we identify whether the induction of autophagy with rapamycin, chemical inducer of autophagy, before infection regulates S. Typhimurium infection. After treatment of rapamycin or 3-methyladenine (3-MA), autophagy inhibitor, RAW264.7 cells were infected with S. Typhimurium. Pretretment of rapamycin decreased the growth rate of S. Typhimurium in the cells; otherwise, pretreatment of 3-MA increased the growth rate of S. Typhimurium. The expression of autophagy-related genes was significantly increased in the S. Typhimurium-infected cells pretreated with rapamycin. To examine whether induced autophagy by rapamycin control the infection with increase the production of reactive oxygen species (ROS) and nitric oxide (NO), antibacterial radical substrates were measured in infected cells followed by the treatment with either rapamycin or 3-MA. NO production increased in RAW264.7 cells; otherwise, ROS production remained unchanged during the infection. These findings suggest that inducing autophagy with rapamycin reveals antimicrobial activity as producing NO against S. Typhimurium infection in mouse macrophages.

Genomic Approaches for Understanding the Characteristics of Salmonella enterica subsp. enterica Serovar Typhimurium ST1120, Isolated from Swine Feces in Korea

  • Kim, Seongok;Kim, Eunsuk;Park, Soyeon;Hahn, Tae-Wook;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1983-1993
    • /
    • 2017
  • Salmonella enterica subsp. enterica serovar Typhimurium, one of the most common foodborne pathogens, is transmitted mainly through contaminated food derived from infected animals. In this study, S. Typhimurium ST1120, an isolate from pig feces in Korea, was subjected to whole-genome analysis to understand its genomic features associated with virulence. The genome of ST1120 was found to have a circular chromosome of 4,855,001 bp (GC content 52.2%) and a plasmid of 6,863 bp (GC content 46.0%). This chromosome was predicted to have 4,558 open reading frames (ORFs), 17 pseudogenes, 22 rRNA genes, and 86 tRNA genes. Its plasmid was predicted to have three ORFs. Comparative genome analysis revealed that ST1120 was phylogenetically close to S. Typhimurium U288, a critical isolate in piggery farms and food chains in Europe. In silico functional analysis predicted that the ST1120 genome harbored multiple genes associated with virulence and stress resistance, including Salmonella pathogenicity islands (SPIs containing SPI-1 to SPI-5, SPI-13, and SPI-14), C63PI locus, ST104 prophage locus, and various antibiotic resistance genes. In accordance with these analysis results, ST1120 showed competence in invasion and survival abilities when it was added to host cells. It also exhibited robust resistance against antibiotics in comparison with other S. Typhimurium strains. This is the first report of the complete genome sequence of S. Typhimurium isolated from swine in Korea. Comparative genome analysis between ST1120 and other Salmonella strains would provide fruitful information toward understanding Salmonella host specificity and developing control measures against S. Typhimurium infection.

Direct and Quantitative Analysis of Salmonella enterica Serovar Typhimurium Using Real-Time PCR from Artificially Contaminated Chicken Meat

  • Park, Hee-Jin;Kim, Hyun-Joong;Park, Si-Hong;Shin, Eun-Gyeong;Kim, Jae-Hwan;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1453-1458
    • /
    • 2008
  • For quantitative PCR assay of Salmonella enterica serovar Typhimurium in food samples, a real-time PCR method was developed, based on DNA genome equivalent. Specific primers and probe designed based on the STM4497 gene of S. Typhimurium LT2 showed the specificity to S. Typhimurium. Threshold cycle (Ct) values of real-time PCR were obtained from a quantitative standard curve with genomic DNA of Salmonella Typhimurium. In addition, the recovery of S. Typhimurium inoculated artificially to chicken samples with $4.5{\times}10^5$ to 4.5 CFU/ml was evaluated by using real-time PCR and plate-count methods. Result showed that the number of cells calculated from the real-time PCR method had good correlation with that of the plate-count method. This real-time PCR method could be applicable to the detection and quantification of S. Typhimurium in food samples.

Characterization of Phage Behaviors Against Antibiotic-Resistant Salmonella Typhimurium

  • Easwaran, Maheswaran;Ahn, Juhee
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.602-606
    • /
    • 2020
  • This study was designed to investigate the dynamic behaviors of phages against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 19585 (STWT), S. Typhimurium KCCM 40253 (STKCCM), ciprofloxacin-induced S. Typhimurium ATCC 19585 strains (STCIP), and S. Typhimurium CCARM 8009 (STCCARM). Phages, including PBST-10, PBST-13, PBST-32, PBST-35, P-22, and P-22 B1 had narrow host ranges. The adsorption rates of all phages ranged from 47 to 85%, 58 to 95%, and 61 to 93%, respectively, against STWT, STKCCM, and STCIP, while the lowest adsorption rates ranged from 14 to 36% against STCCARM. The phage burst sizes were from 43 to 350, 37 to 530, 66 to 500, and 24 to 500 plaque-forming units (PFUs) per infected STWT, STKCCM, STCIP, and STCCARM, respectively. The STCIP strain was effectively inhibited by all phages at the early of incubation period. These results provide useful information for better understanding the phage behaviors against antibiotic-resistant and antibiotic-sensitive pathogens.