• Title/Summary/Keyword: Salt core

Search Result 74, Processing Time 0.027 seconds

A Study on the Fabrication Process and Melt Infiltration of Salt Core in Squeeze Casting Method (스퀴즈캐스팅용 Salt Core의 제조 및 용탕침투성에 관한 연구)

  • Kim, Ki-Bae;Noh, Sang-Woo;Lee, Ho-In;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.402-410
    • /
    • 1997
  • Developing a salt core for squeeze casting process, two different salt cores(pure salt core and mixed salt core) were fabricated and investigated. Pure salt core was composed of 100% NaCl and mixed salt core was made by mixtures of NaCl with MgO(1%), $Na_2B_4O_7$(2%), and talc(1%) as a binder or a strengthening agent. Salt cores were compacted to various theoretical density, heat treated, and then squeeze-cast with molten Al alloy(AC8A). The compression strength of salt cores were measured and the squeeze-cast products were examined for shape retention, infiltration of molten metal into the cores, and microstructures. The shape of salt core compacted at above 75% of the theoretical density was maintained stably. The higher theoretical density of salt cores gave higher compression strength, and the compression strength of mixed salt core was higher than that of pure salt core. Namely at 90% theoretical density, the compression strength of mixed salt core was $6.3 kg/mm^2$, compared to $4.6 kgmm^2$ for pure salt core. At a squeeze casting pressure of $1000 kg/cm^2$, molten Al alloy was infiltrated into pure salt core of under 85% of the theoretical density. At squeeze casting pressure of $1000 kg/cm^2$, only mixed salt core above 90% of the theoretical density were valid, but the shape of the core was altered in the case of pure salt core at 90% of theoretical density. A key factor for developing a salt core for squeeze casting process was estimated as the ultimate compressive strength of salt core.

  • PDF

Core design study of the Wielenga Innovation Static Salt Reactor (WISSR)

  • T. Wielenga;W.S. Yang;I. Khaleb
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.922-932
    • /
    • 2024
  • This paper presents the design features and preliminary design analysis results of the Wielenga Innovation Static Salt Reactor (WISSR). The WISSR incorporates features that make it both flexible and inherently safe. It is based on innovative technology that controls a nuclear reactor by moving molten salt fuel into or out of the core. The reactor is a low-pressure, fast spectrum transuranic (TRU) burner reactor. Inherent shutdown is achieved by a large negative reactivity feedback of the liquid fuel and by the expansion of fuel out of the core. The core is made of concentric, thin annular fuel chambers containing molten fuel salt. A molten salt coolant passes between the concentric fuel chambers to cool the core. The core has both fixed and variable volume fuel chambers. Pressure, applied by helium gas to fuel reservoirs below the core, pushes fuel out of a reservoir and up into a set of variable volume chambers. A control system monitors the density and temperature of the fuel throughout the core. Using NaCl-(TRU,U)Cl3 fuel and NaCl-KCl-MgCl2 coolant, a road-transportable compact WISSR core design was developed at a power level of 1250 MWt. Preliminary neutronics and thermal-hydraulics analyses demonstrate the technical feasibility of WISSR.

Enhanced Moisture Resistance of Salt Core through 2D Kaolinite Colloidal Solution Coating

  • So-Yeon Yoo;Ahrom Ryu;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.154-158
    • /
    • 2023
  • This study aimed to improve the moisture resistance of salt cores by investigating the suitability of a two-dimensional kaolinite colloidal solution and a commercially available SiO2 ink solution as coating agents. X-ray diffraction analysis (XRD) results showed that the intercalation of urea into kaolinite did not significantly change its layer structure. Scanning electron microscopy (SEM) images revealed that the dip-coating only affected the surface of the salt core, and the texture of the surface is differ depending on the coating solution. The humidity absorption test results showed that both coatings reduced the hygroscopicity of the salt core by more than 50%. However, in the water-solubility test, the kaolinite dissolved with the salt core, whereas the SiO2-coated salt core left a residue. These results strongly suggest that with the coating of the exfoliated kaolinite solution, salt core will remain stable in humid environments.

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

Evaluation of Microstructure and Mechanical Property of a Novel Ceramic Salt Core (세라믹 용융코어의 미세조직과 기계적 특성)

  • Lee, Jun-Ho;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.4
    • /
    • pp.166-169
    • /
    • 2008
  • This study deals about the development of fusible core with low melting temperature by addition of ceramic particles. A new concept of salt core was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The mechanical properties of fusible core were improved due to the addition of ceramic particles which helped to produce fine microstructure. The new technology for the preparation of new fusible core materials which possess high compression strength was established. Addition of ceramics particles increased the mechanical properties of fusible core materials. There was an increasing relationship between percentage of ceramic particles and mechanical strength was existed up to 60%.

Effect of Applying Pressure of High Pressure Diecasting Process Using Salt core (용탕단조 시 저온염코어 적용 가압력의 영향)

  • Lee, Jun-Ho;Moon, J.H.;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.136-140
    • /
    • 2008
  • A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy, was introduced to produced an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The main goal of this study is to develop a new integrated net-shape forming technology using fusible core of lower melting temperature than that of a casting alloy. This integrated net-shape forming technology would be very successful and cost-effective for producing the integrated products having a complicated inner shape or requiring under-cut. The technology for measuring and evaluating a various property of fusible core such as a thermal conductivity and thermal expansion coefficient, melting temperature was established. Also, the work space can be cleaned without a pollution inducing products.

GWAS of Salt Tolerance and Drought Tolerance in Korean Wheat Core Collection

  • Ji Yu Jeong;Kyeong Do Min;Jae Toon Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.195-195
    • /
    • 2022
  • Abiotic stress is a major problem in global agriculture as it negatively affects crop growth, yield, and quality. Wheat (Triticum aestivum) is the world's second-highest-producing food resource, so the importance of mitigating damage caused by abiotic stress has been emerging. In this study, we performed GWAS to search for SNPs associated with salt tolerance and drought tolerance. NaCl (200 mM) treatment was performed at the seedling stage using 613 wheat varieties in Korean wheat core collection. Root length, root surface area, root average diameter, and root volume were measured. Drought stress was applied at the seedling stage, and the above phenotypes were measured. GW AS was performed for each phenotype data using the MLM, MLMM, and FarmCPU models. The best salt-tolerant wheat varieties were 'MK2402', 'Gyeongnam Geochang-1985-3698', and 'Milyang 13', showing superior root growth. The significant SNP AX-94704125 (BA00756838) were identified in all models. The genes closely located to the significant SNP were searched within ± 250 kb of the corresponding SNP. A total of 11 genes were identified within the region. NB-ARC involved in the defense response, FKSI involved in cell wall biosynthesis, and putative BP Ml involved in abiotic stress responses were discovered in the 11 genes. The best drought-tolerant wheat varieties were 'PI 534284', 'Moro of Sind', and 'CM92354-33M-0Y-0M-6Y-0B-0BGD', showing superior root growth. This study discovered SNPs associated with salt tolerance in Korean wheat core collection through GWAS. GWAS of drought tolerance is now proceeding, and the GWAS results will be represented on a poster. The SNPs identified by GWAS can be useful for studying molecular mechanisms of salt tolerance and drought tolerance in wheat.

  • PDF

Design and neutronic analysis of the intermediate heat exchanger of a fast-spectrum molten salt reactor

  • Terbish, Jamiyansuren;van Rooijen, W.F.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2126-2132
    • /
    • 2021
  • Various research groups and private interprises are pursuing the design of a Molten Salt Reactor (MSR) as one of the Generation-IV concepts. In the current work a fast neutron MSR using chloride fuel is analyzed, specially analyzing the power production and neutron flux level in the Intermediate Heat Exchanger (IHX). The neutronic analysis in this work is based on a chloride-fuel MSR with 600 MW thermal power. The core power density was set to 100 MW m-3 with a core H/D [[EQUATION]] 1.0 amd four Intermediate Heat Exchanger (IHX). This leads to a power of 150 MW per IHX; this power is also comparable to the IHX proposed in the SAMOFAR framework. In this work, a preliminary design of a 150 MW helical-coil IHX for a chloride-fueled MSR is prepared and the fission rate, capture rate, and inelastic scatter rate are evaluated.

Isolation of SYP61/OSMl that is Required for Salt Tolerance in Arabidopsis by T-DNA Tagging (애기장대에서 고염 스트레스 내성에 관여하는 OSM1/SYP61 유전자의 동정)

  • Kim, Ji-Yeon;Baek, Dong-Won;Lee, Hyo-Jung;Shin, Dong-Jin;Lee, Ji-Young;Choi, Won-Kyun;Kim, Dong-Giun;Chung, Woo-Sik;Kwak, Sang-Soo;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2006
  • Salt stress is one of major environmental factors influencing plant growth and development. To identify salt tolerance determinants in higher plants, a large-scale screen was conducted with a bialaphos marker-based T-DNA insertional collection of Arabidopsis ecotype C24 mutants. One line for salt stress-sensitive mutant (referred to as ssm1) exhibited increased sensitivity to both ionic (NaCl) and nonionic (mannitol) osmotic stress in a root growth assay. This result suggests that ssm1 mutant is involved in ion homeostasis and osmotic compensation in plant. Molecular cloning of the genomic DNA flanking T-DNA insert of ssm1 mutant was achieved by mutant genomic DNA library screening. T-DNA insertion appeared in the first exon of an open reading frame on F3M18.7, which is the same as AtSYP61. SSM1 is SYP61/OSM1 that is a member of the SNARE superfamily of proteins required for vesicular/target membrane fusions and factor related to abiotic stress.

Molecular Mechanism of Plant Adaption to High Salinity (식물의 고염 스트레스에 대한 반응 및 적응기작)

  • Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • Plant responses to salinity stress is critical in determining the growth and development. Therefore, adaptability of plant to salinity stress is directly related with agriculture productivity. Salt adaptation is a result of the integrated functioning of numerous determinants that are regulated coordinately through an appropriate responsive signal transduction cascade. The cascade perceives the saline environment and exerts control over the essential mechanisms that are responsible for ion homeostasis and osmotic adjustment. Although little is known about the component elements of salt stress perception and the signaling cascade(s) in plant, the use of Arabidopsis plant as a molecular genetic tool has been provided important molecular nature of salt tolerance effectors and regulatory pathways. In this review, I summarize recent advances in understanding the molecular mechanisms of salt adaptation.