• Title/Summary/Keyword: Salt core

Search Result 80, Processing Time 0.04 seconds

A Study on Partial Discharge Degradation Properties of PVC Cable due to NaCl (NaCl에 의한 PVC 케이블의 부분방전 열화 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.636-641
    • /
    • 2015
  • In this study, the partial discharge degradation properties for 2-core PVC cable($2cores{\times}1.5mm^2$ cross section, length of 10 cm, 20 cm, 30 cm) following immersion with the salt water that the 2%, 4%, 8% of NaCl is dissolved in 100 g of distilled water for 48 and 96 hours has been measured. The results of this study are as follows. When the degradation time in salt water of 2% NaCl is 48 hours, it found that the number of partial discharge increased as about 40 pps, 50 pps, 90 pps with increasing the length of cable to 10 cm, 20 cm, 30 cm. In case the concentration and degradation time is same, the inception and extinction voltage decreased with increasing the length of cable. When the degradation time in salt water is 96 hours and the length of cable is 20 cm, it found that the number of partial discharge decreased as 3,000 pps, 500 pps, 100 pps with increasing the concentration of NaCl to 2%, 4%, 8%.

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.

Uncertainty analysis of heat transfer of TMSR-SF0 simulator

  • Jiajun Wang;Ye Dai;Yang Zou;Hongjie Xu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.762-769
    • /
    • 2024
  • The TMSR-SF0 simulator is an integral effect thermal-hydraulic experimental system for the development of thorium molten salt reactor (TMSR) program in China. The simulator has two heat transport loops with liquid FLiNaK. In literature, the 95% level confidence uncertainties of the thermophysical properties of FLiNaK are recommended, and the uncertainties of density, heat capacity, thermal conductivity and viscosity are ±2%, ±10, ±10% and ±10% respectively. In order to investigate the effects of thermophysical properties uncertainties on the molten salt heat transport system, the uncertainty and sensitivity analysis of the heat transfer characteristics of the simulator system are carried out on a RELAP5 model. The uncertainties of thermophysical properties are incorporated in simulation model and the Monte Carlo sampling method is used to propagate the input uncertainties through the model. The simulation results indicate that the uncertainty propagated to core outlet temperature is about ±10 ℃ with a confidence level of 95% in a steady-state operation condition. The result should be noted in the design, operation and code validation of molten salt reactor. In addition, more experimental data is necessary for quantifying the uncertainty of thermophysical properties of molten salts.

Study of circulating liquid fuel in a 1D critical system with thermal feedback

  • Mathis Caprais;Daniele Tomatis;Andre Bergeron
    • Nuclear Engineering and Technology
    • /
    • v.56 no.12
    • /
    • pp.5212-5221
    • /
    • 2024
  • This research focuses on the description and modeling of a one-dimensional molten salt reactor (MSR), in the presence of thermal feedback. Following the example of previous works, a simple one-dimensional system is proposed, describing a molten salt reactor with a main neutron-multiplying zone called core and a recirculation loop where the salt cools down. Specific attention is paid to the precursors' drift by modifying the neutron balance equation. Liquid nuclear fuels are characterized by a high volumetric expansion coefficient in comparison to customary solid fuels. Therefore, a strong coupling between neutronics and thermal-hydraulics is expected. As a consequence, a highly negative density coefficient characterizes the thermal feedback on the neutron reactivity. The precursor equation is here inverted analytically and combined with the neutron balance equation to obtain a generalized eigenvalue problem with the neutron flux distribution as the unknown. The balance equations are derived by finite volume integration over a discretized mesh, and the coupling between the two physical models is treated by Picard iterations. The numerical solution is finally extended to time-dependent calculations and compared to an analytical work for a one-dimensional circulating fuel reactor already existing in the literature.

Enhancing the Absorption Properties of Biomass-based Superabsorbent Terpolymer

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.249-256
    • /
    • 2020
  • Superabsorbent polymers (SAPs) can absorb and retain ten to thousand times their dry mass of water because of their three-dimensional hydrophilic structures. Conventional SAPs are mainly composed of poly(acrylic acid sodium salt) derived from petrochemicals. The present work is aimed at limiting the use of the petrochemical component by replacing it with a biomass-based material. First, the core-SAP was prepared via the terpolymerization of itaconic acid, vinylsulfonic acid, and cellulose, and the optimum conditions in terms of material input ratio were determined. Following this, the core-SAP was surface-crosslinked by esterification with butane diol to improve its liquid permeability and absorbency under load (AUL). The liquid permeability was measured according to the amount of 0.9 wt.% NaCl solution passing between the swollen SAP particles under a given pressure, and the AUL was estimated from the weight of this solution absorbed under 0.3 psi pressure.

Some Static Design Characteristics of the Optimized ${250MW_th}$ AMBIDEXTER Core (${250MW_th}$ AMBIDEXTER 원자로의 정특성 최적설계)

  • 조재국;원성희;임현진;김태규;윤정선;오세기
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.113-118
    • /
    • 1999
  • AMBIDEXTER(Advanced Molten-salt Break-even Inherently-safe Dual-mission Experimental and TEst Reactor)는 고온저압의 Th/$^{233}$ U 불화용융염을 핵연료로 사용하므로 피복관이나 독립된 냉각재 없이 핵연료 자체가 열수송 매체로서 순환하는 원자로시스템개념으로서 저농축 $^{235}$ U 고체 핵연료를 사용하는 기존의 원자력 발전시스템이 안고있는 핵확산과 안전성 등의 고유문제를 해결할 수 있는 혁신형 차세대 원자력 발전시스템이다.(중략)

  • PDF

Use of an Imaging Technology for Characterizing Core-scale Multiphase Flow: Application to CO2 Geological Storage (이미징기술을 활용한 코어규모의 다상유체 유동 특성화: 이산화탄소 지중저장 연구에의 적용)

  • Kim, Kue-Young
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • Imaging technologies are applied at various geological scales including pore scale, core scale and intermediate scale in order to characterize pore space of rocks as well as to map the fluid distribution in porous media. This technical report presents experimental results using core-flooding apparatus suited with imaging technology. Three different core samples, that are homogeneous, fractured and heterogeneous cores, were used to assess the two-phase fluid migration behavior as $CO_2$ displaces resident brine. We show that imaging technology can be effective in characterizing salt-precipitation, capillary pressure and spatio-temporal variation of trapping mechanisms.

Core-Shell Poly(Styrene/Sulfonated N-hydroxy Ethyl Aniline) Latex Particles Prepared by Chemical Oxidative Polymerization in Emulsion Polymerization

  • Shin Jin-Sup;Lee Jung-Min;Suzuki Kiyoshi;Nomura Mamoru;Cheong In-Woo;Kim Jung-Hyun
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.466-472
    • /
    • 2006
  • The kinetic behavior of emulsion polymerizations of styrene in the presence of sulfonated N-hydroxy ethyl aniline (SHEA) was investigated with two initiators: 2,2'-azobisisobutyronitrile (AIBN) and potassium persulfate (KPS). SHEA was synthesized using a stepwise polyurethane reaction method from 3-hydroxy-1-propane sulfonic acid sodium salt, isophorone diisocyanate (IPDI), and N-(2-hydroxyethyl) aniline. Stable core-shell poly(styrene/sulfonated N-hydroxy ethyl aniline, St/SHEA) latex particles were successfully prepared by using an appropriate amount of AIBN, in which SHEA plays the role of 'surfmer', i.e., acting as both a surfactant in the emulsion polymerization and a monomer in the chemical oxidative polymerization. The kinetic behavior was dissimilar to that of typical emulsion polymerization systems. A long inhibition period and low rate of polymerization were observed due to radical loss by the oxidative polymerization of SHEA. It was concluded, due to the low water-solubility of AIBN and retardation reaction by SHEA, that the initial loci of polymerization were monomer droplets. However, growing polymer particles as polymerization loci became predominant as polymerization proceeded. It was suggested that AIBN was more effective than KPS in the preparation of the core-shell type poly(St/SHEA) latex particles. With KPS, no substantial polymerization was observed in any of the samples.