• Title/Summary/Keyword: Saprolegnia parasitica

Search Result 6, Processing Time 0.026 seconds

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

Identification of water mold from wild brook lamprey, Lethenterone reissneri (자연산 다묵장어, Lethenterone reissneri에서 발생한 물곰팡이병 원인체의 동정)

  • Kim, Hyoung Jun;Park, Jeong Su;Kim, Sung Yeon;Koo, Ja Geun;Bang, In-Chul;Kwon, Se Ryun
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Saprolegnia isolate from wild brook lamprey was identified on the basis of its morphological and molecular characteristics. The isolates showed aseptic hyphae and clavate zoosporagium. Zoospores discharge was typically saprolegnoid. Neither oogomia nor antheridia was observed in this study. ITS sequence obtained from the isolate was compared with other Saprolegnia spp. to analyse their phylogenetic relationships. Results showed that the isolate belongs to clade I including Saprolegnia parasitica. Based on the asexual organs, zoospore discharge manner and ITS sequence analysis, the isolate was identified as S. parasitica.

A Gene Encoding $\beta$-amylase from Saprolegnia parasitica and Its Expression in Saccharomyces cerevisiae

  • Kim, Hee-Ok;Park, Jeong-Nam;Shin, Dong-Jun;Lee, HwangHee Blaise;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.529-533
    • /
    • 2001
  • The ${\beta}$-Amylase cDNA fragment from the oomcete Saprolegnia parasitica was cloned by reverse transcription-polymerase chain reaction (RT-PCR) using degenerate oligonucleotide primers derived from conserved ${\beta}$-amylase sequences. The 5'and 3'regions of the $\beta$-amylase gene were amplified using the rapid amplification of cDNA ends (rACE) system. It consisted of an open reading frame of 1,350 bp for a protein of 450 amino acids. Comparison between the genomic and cDNA sequences revealed that the intron was not present in the coding region. The deduced amino acid sequence of the ${\beta}$-amylase gene had a 97% similarity to the ${\beta}$-amylase of Saprolegnia ferax, followed by 41% similarity to those of Arabidopsis thaliana, Hordeum vulgare, and Zea mays. The ${\beta}$-amylase gene was also expressed in Saccharomyces cerevisiae by placing it under the control of the alcohol dehydrogenase gene (ADC1) promoter.

  • PDF

Fish Safety and Antimicrobial Activity of Natural Sulfur Solution on Aquatic Microorganisms (Saprolegnia parasitica) Isolated from Misgurnus mizolepis (미꾸라지(Misgurnus mizolepis)에서 분리된 수생균 (Saprolegnia parasitica)에 대한 천연유황수의 항균 활성 및 처리에 대한 어류 안전성)

  • Yi, Seung-Won;Lee, Seung-Hyeop;Lee, Sang-Jong;Kim, Mi-Hee;Lee, Hye-Hyun;Chu, Saet-Byul;Kim, Kyung-Hee;Lee, Hee Jung
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.116-122
    • /
    • 2017
  • Basic dyes such as malachite green and methylene blue have been used as disinfectants to control water fungal infections since the 1930s. However, after succeeding reports of carcinogenicity and bioaccumulation of the dye, their use was forbidden in lieu of public health. This study undertook to evaluate the therapeutic effect of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica infection, and its safety in fish. In vitro antifungal evaluation of EM-PSS inhibited the growth of S. parasitica mycelia at concentrations of 50 ppm or higher. The acute toxicity test of EM-PSS to the mud fish (Misgurnus mizolepis) measured a no effect concentration (NOEC) at 100 ppm, the lowest effect concentration (LOEC) at 125 ppm, and the half-lethal concentration ($LC_{50}$) at 125 ppm in juvenile and 250 ppm in the immature stage. In addition, the ecotoxicity test of EM-PSS using Daphnia magna inhibited swimming of D. magna at concentrations of 100 ppm or less. Lastly, the EM-PSS prevented infection of S. parasitica to mud fish, at concentrations of 50 ppm. Furthermore, at 100 ppm concentration, the EM-PSS showed no acute toxicity on mud fish, nor any eco-toxic effects on D. magnano. Therefore, we conclude that carcinogenic disinfectants such as malachite green and methylene blue could be replaced by EM-PSS to remove S. parasitica in mud fish farming, and might be a potential eco-friendly disinfectant in aquaculture.

Identification and chemotherapeutic effects of the fungi from three salmonid species and their eggs (3종의 연어과 어류와 수정난으로부터 분리한 물곰팡이병 원인 진균의 분류와 약물 효과)

  • Jee, Bo-Young;Lee, Deok-Chan;Kim, Na-Young;Jung, Sung-Hee;Park, Soo-Il
    • Journal of fish pathology
    • /
    • v.20 no.2
    • /
    • pp.147-160
    • /
    • 2007
  • Four strains of water mold, ChS-E0511, RaT-E0511, RaT-A0512 and MaS-F0512, were isolated from salmonid fish and/or their eggs taken from culture farms in Yangyang, Milyang and Pyeongchang, Korea in 2005. Descriptions of their morphological aspects, the results of the phylogenetic analysis conducted, and the sequence of the small sub-unit 18S rRNAs of the isolates confirmed that they all belong to the species Saprolegnia parasitica. Only one species, ChS-E0511, which was isolated from fertilized eggs of the chum salmon, was classified as part of the S. parasiticaGroup 1 according to its oogonia and gemmae production. The chemotherapeutic effects of various chemicals on the ChS-E0511 strain were assessed from the inhibitory effects of growth in GY media and the relative ratio of eyed eggs to fertilized eggs of the rainbow trout. Malchite green, a prohibited substance in food animals, was better than others, such as the Opuntia ficus-indicaextract, 2-bronopol, and sodium chloride. These results suggest that the fungi isolated from salmonids and/or their eggs identified as S. parasitica were composed of more than two groups. These isolates will be useful in an intensive evaluation of therapeutic agents.

Comparative Efficacy of Antifungal Agents for Aquaculture Fish and their Eggs (양식 어류와 이들 난에 대한 항곰팡이성 약물들의 효과 비교)

  • Lee, Bo-Young;Lee, Deok-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • In fresh water fish hatcheries and farms, Saprolegniales often cause serious mortality to the fish and their eggs. Malachite green is an effective antifungal agent, but is carcinogenic to fish and humans. Alternative antifungal agents are needed. Presently, we tested various concentrations of MBT-01108 (Opuntia ficus-indica extracts) alone and in combination with bronopol, formalin and sodium chloride (MBT-01108 mixture) on in vitro mycelial growth and in vivo remediation of adult eel, Anguilla japonica, infected with Saprolegnia sp. and fertilized eggs of chum salmon, Oncorhynchus keta, to evaluate the compounds' antifungal efficacy on eyed-egg and hatching rates. MBT-Oll08 mixtures incorporating bronopol and formalin at respective concentrations of 50 and 30 parts per million (ppm), and 100 and 20 ppm were most effective in controlling Saprolegnia in vitro and in vivo (P<0.05). Repeated daily exposures to 50 ppm and 100 ppm MBT-01108 were more effective than exposure every 2-3 days post-fertilization for the inhibition of Saprolegnia infection of rainbow trout, Oncorhynchus mykiss eggs as compared with control (0 ppm).