• 제목/요약/키워드: Saturated soils

검색결과 259건 처리시간 0.026초

Changes of Saturated Hydraulic Conductivity of Bed-soils Mixed with Organic and Inorganic Materials

  • Lee, Jeong-Eun;Kim, Yong;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제47권1호
    • /
    • pp.66-70
    • /
    • 2014
  • Bed-soils can be used to help plants to overcome unfavorable conditions of soils, especially hydraulic properties of soils. This study was conducted to evaluate the effect of organic and inorganic raw materials on saturated hydraulic conductivity ($K_s$) of bed-soils. Perlite and bottom ash, which are inorganic materials, increased more $K_s$ of bed-soils than coco peat, an organic material. However, vermiculite, an inorganic material, increased less than coco peat. Saturated hydraulic conductivity of bed-soil mixed with fine vermiculite ($0.14{\pm}0.02mh^{-1}$) was much lower than one containing coarse vermiculite ($0.85{\pm}0.21mh^{-1}$). Such effect was more apparent when pressure was added on bed-soils containing fine vermiculite ($0.07{\pm}0.01mh^{-1}$), probably reflecting the decrease in pore size with the expansion of vermiculite wetted. Compacting decreased more $K_s$ in the bed-soils containing coco peat or vermiculite than other mixtures. Those results suggest that perlite and bottom ash in bed-soils play an important role in improving saturated hydraulic conductivity but vermiculite in bed-soils may suppress the improvement of saturated hydraulic conductivity with the decrease of its size and with the increase of compacting pressure.

Parametric study on flexible footing resting on partially saturated soil

  • Singh, Mandeep;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.233-245
    • /
    • 2014
  • Coupled finite element analysis is carried out to study the effect of degree of saturation on the vertical displacements and pore water pressures simultaneously by developing a FORTRAN90 code. The finite element formulation adopted in the present study is based upon Biot's consolidation theory to include partially saturated soils. Numerical methods are applied to a two-dimensional plane strain strip footing (flexible) problem and the effect of variable degree of saturation on the response of excess pore water pressure dissipation and settlement of the footing is studied. The immediate settlement in the case of partly saturated soils is larger than that of a fully saturated soil, the reason being the presence of pore air in partially saturated soils. On the other hand, the excess pore water pressure for partially saturated soil are smaller than those for fully saturated soil.

DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측 (A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation)

  • 박인준;김수일;정철민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

낙동강 실트질 모래의 불포화 전단강도특성 (Unsaturated shear strength characteristics of Nak-dong River silty-sand)

  • 차봉근;김영수;박성식;신지섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.53-60
    • /
    • 2010
  • The natural soils are classified in saturated soils and unsaturated soils according to level of ground water but the research for only saturated soils has been conducted by this time. However, there are many proble.ms which are not solved by using the concept and principle of saturated soils on the natural soils. In fact, it is known that unsaturated soils represent the behavior characteristic unlike completely saturated soils because of the adhesion under the influence of negative pore water pressure, the high angle of friction and the low water permeability by the air entry. So it needs to conduct the various researches on insufficient unsaturated soils. In this paper, unsaturated triaxial compressive tests are conducted in order to do research on shear strength characteristic on sands and silty sands of Nakdong river. As a result of the tests, the cohesion is increased in non-linear type according to the change of the matric suction, but the angle of internal friction is not changed much.

  • PDF

포화 수리전도도와 불투수층 깊이에 따른 우리나라 토양의 수문학적 토양군 분류 (Classification of Hydrologic Soil Groups of Korean Soils Using Estimated Saturated Hydraulic Conductivity and Depth of Impermeable Layer)

  • 한경화;정강호;조희래;이협성;옥정훈;서미진;장용선;서영호
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.25-30
    • /
    • 2017
  • Hydrologic soil group is one of the important factors to determine runoff potential and curve number. This study was conducted to classify the hydrologic soil groups of Korean soils by considering saturated hydraulic conductivity and depth of impermeable layer. Saturated hydraulic conductivity of Korean soils was estimated by pedotransfer functions developed in the previous studies. Most of paddy soils were classified as D type due to shallow impermeable layer and low saturated hydraulic conductivity in B soil horizon. For upland and forest, soils classified to A and D types increased compared with former classification method because underestimated permeabilities and overestimated drainages were corrected and rock horizon in shallow depth was regarded as impermeable layer. Soils in mountainous land showed the highest distribution in A type, followed by D type. More than 60 % of soils in mountain foot-slope, fan and valley, alluvial plains, and fluvio-marine deposits were classified to D type because of land use such as paddy and upland.

점성토의 회복탄성계수($M_r$)에 대한 포화도의 영향 (Effect of Saturation on Resilient Modulus of Cohesive soils as subgrade)

  • 김동규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1140-1147
    • /
    • 2005
  • The objective of this study was to identify the effect of the degree of saturation on the resilient modulus of cohesive soils as subgrade. Six representative cohesive soils representing A-4, A-6, and A-7-6 soil types collected from road construction sites across Ohio, were tested in the laboratory to determine their basic engineering properties. Resilient modulus tests were conducted on unsaturated cohesive soils at optimum moisture content, and samples compacted to optimum conditions but allowed to fully saturate. The subgrade compacted at optimum moisture content may be fully saturated due to seasonal change. Laboratory tests on fully saturated cohesive soils showed that the resilient modulus of saturated soils decreased to less than half that of soil specimens tested at optimum moisture content. The reduction of resilient modulus would possibly be caused by the buildup of pore water pressure. In resilient modulus testing performed in this study on saturated samples, pore water pressure increases were observed. Pore water pressure and residual pore water pressure gradually increased with an increase in deviator stress.

  • PDF

이방압밀이 흙의 강도에 미치는 영향 (Effects of Anisotropic Consolidation on Strength of Soils)

  • 강병희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

불포화 풍화토의 $K_0$ 압밀 삼축압축실험 ([ $K_0$ ] consolidated triaxial tests for unsaturated weathered soils)

  • 김태경;오세붕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.860-865
    • /
    • 2006
  • In order to predict the stability of slopes, it is important to evaluate shear strength of unsaturated soils. The triaxial tests were performed under $K_0$ conditions for unsaturated soils and the results were compared with those for saturated soils. In unsaturated soils, the secant modul and the shear strengths are larger than those of saturated soils because of matric suctions. However the shear strengths were not affected severely by stress conditions at consolidation.

  • PDF

Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis

  • Yoon, Seok;Lee, Seung-Rae;Kim, Yun-Tae;Go, Gyu-Hyun
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.101-113
    • /
    • 2015
  • Saturated soil hydraulic conductivity is a very important soil parameter in numerous practical engineering applications, especially rainfall infiltration and slope stability problems. This parameter is difficult to measure since it is very highly sensitive to various soil conditions. There have been many analytical and empirical formulas to predict saturated soil hydraulic conductivity based on experimental data. However, there have been few studies to investigate in-situ hydraulic conductivity of weathered granite soils, which constitute the majority of soil slopes in Korea. This paper introduces an estimation method to derive saturated hydraulic conductivity of Korean weathered granite soils using in-situ experimental data which were obtained from a variety of slope areas of South Korea. A robust regression analysis was performed using different physical soil properties and an empirical solution with an $R^2$ value of 0.9193 was suggested. Besides that this research validated the proposed model by conducting in-situ saturated soil hydraulic conductivity tests in two slope areas.

Hydraulic Property and Solute Breakthrough from Salt Accumulated Soils under Various Head Pressures

  • Lee, Sanghun;Chung, Doug-Young;Hwang, Seon-Woong;Lee, Kyeong-Bo;Yang, Chang-Hyu;Kim, Hong-Kyu
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.717-724
    • /
    • 2012
  • Salt accumulated soil should be reclaimed to lower salt level for crop production. This study was carried out to investigate the characteristics of water flow and transport of mono and divalent solutes on salt accumulated soils with different head pressures. Saturated hydraulic conductivity was measured by constant and falling head methods with maintaining different head pressures. Saturated hydraulic conductivity was influenced by bulk density and organic matter contents in soils, but it had different elusion patterns between saline and sodic soil. While the quantity of water necessary for reclamation could be varies with soil type, it was considered that the supply of one pore volume of water was affordable and economic. Additional head pressure significantly increased the volume of leachate at a given time and it was more effective at low organic matter soils. The results indicate that additional head pressure would be one of the best irrigation practices on desalination method for salt accumulated soils.