• Title/Summary/Keyword: Scan-based test

Search Result 207, Processing Time 0.033 seconds

Selective Segment Bypass Scan Architecture for Test Time and Test Power Reduction (테스트 시간과 테스트 전력 감소를 위한 선택적 세그먼트 바이패스 스캔 구조)

  • Yang, Myung-Hoon;Kim, Yong-Joon;Park, Jae-Seok;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.5
    • /
    • pp.1-8
    • /
    • 2009
  • Since scan based testing is very efficient and widely used for testing large sequential circuits. However, since test patterns are serially injected through long scan chains, scan based testing requires very long test application time. Also, compared to the normal operations, scan shifting operations drastically increase power consumption. In order to solve these problems, this paper presents a new scan architecture for both test application time and test power reduction. The proposed scan architecture partitions scan chains into several segments and bypasses some segments which do not include any specified bit. Since bypassed segments are excluded from the scan shifting operation, the test application time and test power can be significantly reduced.

A New Scan Partition Scheme for Low-Power Embedded Systems

  • Kim, Hong-Sik;Kim, Cheong-Ghil;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.412-420
    • /
    • 2008
  • A new scan partition architecture to reduce both the average and peak power dissipation during scan testing is proposed for low-power embedded systems. In scan-based testing, due to the extremely high switching activity during the scan shift operation, the power consumption increases considerably. In addition, the reduced correlation between consecutive test patterns may increase the power consumed during the capture cycle. In the proposed architecture, only a subset of scan cells is loaded with test stimulus and captured with test responses by freezing the remaining scan cells according to the spectrum of unspecified bits in the test cubes. To optimize the proposed process, a novel graph-based heuristic to partition the scan chain into several segments and a technique to increase the number of don't cares in the given test set have been developed. Experimental results on large ISCAS89 benchmark circuits show that the proposed technique, compared to the traditional full scan scheme, can reduce both the average switching activities and the average peak switching activities by 92.37% and 41.21%, respectively.

  • PDF

Test Methodology for Multiple Clocks Single Capture Scan Design based on JTAG IEEE1149.1 Standard (IEEE 1149.1 표준에 근거한 다중 클럭을 이용한 단일 캡쳐 스캔 설계에 적용되는 경계 주사 테스트 기법에 관한 연구)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.980-986
    • /
    • 2007
  • Boundary scan test structure(JTAG IEEE 1149.1 standard) that supports an internal scan chain is generally being used to test CUT(circuit under test). Since the internal scan chain can only have a single scan-in port and a single scan-out port; however, existing boundary test methods can not be used when multiple scan chains are present in CUT. Those chains must be stitched to form a single scan chain as shown in this paper. We propose an efficient boundary scan test structure that adds a circuit called Clock Group Register(CGR) for multiple clocks testing within the design of multiple scan chains. The proposed CGR has the function of grouping clocks. By adding CGR to a previously existing boundary scan design, the design is modified. This revised scan design overcomes the limitation of supporting a single scan-in port and out port, and it bolsters multiple scan-in ports and out ports. Through our experiments, the effectiveness of CGR is proved. With this, it is possible to test more complicated designs that have high density with a little effort. Furthermore, it will also benefit in designing those complicated circuits.

Design for Lour pouter Scan-based BIST Using Circuit Partition and Control Test Input Vectors (회로분할과 테스트 입력 벡터 제어를 이용한 저전력 Scan-based BIST 설계)

  • 신택균;손윤식;정정화
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, we propose a low power Scan-based Built-ln Self Test based on circuit partitioning and pattern suppression using modified test control unit. To partition a CUT(Circuit Under Testing), the MHPA(Multilevel Hypergraph Partition Algorithm) is used. As a result of circuit partition, we can reduce the total length of test pattern, so that power consumptions are decreased in test mode. Also, proposed Scan-based BIST architecture suppresses a redundant test pattern by inserting an additional decoder in BIST control unit. A decoder detects test pattern with high fault coverage, and applies it to partitioned circuits. Experimental result on the ISCAS benchmark circuits shows the efficiency of proposed low power BIST architecture.

  • PDF

Low Power Scan Chain Reordering Method with Limited Routing Congestion for Code-based Test Data Compression

  • Kim, Dooyoung;Ansari, M. Adil;Jung, Jihun;Park, Sungju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.582-594
    • /
    • 2016
  • Various test data compression techniques have been developed to reduce the test costs of system-on-a-chips. In this paper, a scan chain reordering algorithm for code-based test data compression techniques is proposed. Scan cells within an acceptable relocation distance are ranked to reduce the number of conflicts in all test patterns and rearranged by a positioning algorithm to minimize the routing overhead. The proposed method is demonstrated on ISCAS '89 benchmark circuits with their physical layout by using a 180 nm CMOS process library. Significant improvements are observed in compression ratio and test power consumption with minor routing overhead.

Efficient AMBA Based System-on-a-chip Core Test With IEEE 1500 Wrapper (IEEE 1500 래퍼를 이용한 효과적인 AMBA 기반 시스템-온-칩 코아 테스트)

  • Yi, Hyun-Bean;Han, Ju-Hee;Kim, Byeong-Jin;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.61-68
    • /
    • 2008
  • This paper introduces an embedded core test wrapper for AMBA based System-on-Chip(SoC) test. The proposed test wrapper is compatible with IEEE 1500 and can be controlled by ARM Test Interface Controller(TIC). We use IEEE 1500 wrapper boundary registers as temporal registers to load test results as well as test patterns and apply a modified scan test procedure. Test time is reduced by simultaneously performing primary input insertion and primary output observation as well as scan-in and scan-out.

Test Generation of Sequential Circuits Using A Partial Scan Based on Conversion to Pseudo-Combinational Circuits (유사 조합 회로로의 변환에 기초한 부분 스캔 기법을 이용한 디지털 순차 회로의 테스트 기법 연구)

  • Min, Hyoung-Bok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.504-514
    • /
    • 1994
  • Combinational automatic test pattern generators (CATPG) have already been commercialized because their algorithms are well known and practical, while sequential automatic test pattern generators(SATPG) have been regarded as impractical because they are computationally complex. A technique to use CATPG instead of SATPG for test generation of sequential circuits is proposed. Redesign of seauential circuits such as Level Sensitive Scan Design (LSSD) is inevitable to use CATPG. Various partial scan techniques has been proposed to avoid full scan such as LSSD. It ha sbeen reported that SATPG is required to use partial scan techniques. We propose a technique to use CATPG for a new partial scan technique, and propose a new CATPG algorithm for the partially scanned circuits. The partial scan technique can be another choice of design for testability because it is computationally advantageous.

  • PDF

Physical-Aware Approaches for Speeding Up Scan Shift Operations in SoCs

  • Lee, Taehee;Chang, Ik Joon;Lee, Chilgee;Yang, Joon-Sung
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.479-486
    • /
    • 2016
  • System-on-chip (SoC) designs have a number of flip-flops; the more flip-flops an SoC has, the longer the associated scan test application time will be. A scan shift operation accounts for a significant portion of a scan test application time. This paper presents physical-aware approaches for speeding up scan shift operations in SoCs. To improve the speed of a scan shift operation, we propose a layout-aware flip-flop insertion and scan shift operation-aware physical implementation procedure. The proposed combined method of insertion and procedure effectively improves the speed of a scan shift operation. Static timing analyses of state-of-the-art SoC designs show that the proposed approaches help increase the speeds of scan shift operations by up to 4.1 times that reached under a conventional method. The faster scan shift operation speeds help to shorten scan test application times, thus reducing test costs.

Efficient Parallel Scan Test Technique for Cores on AMBA-based SoC

  • Song, Jaehoon;Jung, Jihun;Kim, Dooyoung;Park, Sungju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.345-355
    • /
    • 2014
  • Today's System-on-a-Chip (SoC) is designed with reusable IP cores to meet short time-to-market requirements. However, the increasing cost of testing becomes a big burden in manufacturing a highly integrated SoC. In this paper, an efficient parallel scan test technique is introduced to minimize the test application time. Multiple scan enable signals are adopted to implement scan architecture to achieve optimal test application time for the test patterns scheduled for concurrent scan test. Experimental results show that testing times are considerably reduced with little area overhead.

Partial Enhanced Scan Method for Path Delay Fault Testing (경로 지연 고장 테스팅을 위한 부분 확장 주사방법)

  • Kim, Won-Gi;Kim, Myung-Gyun;Kang, Sung-Ho;Han, Gun-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3226-3235
    • /
    • 2000
  • The more complex and larger semiconductor integraed circuits become, the core important delay test becomes which guarantees that semiconductor integrated circuits operate in time. In this paper, we propose a new partial enhanced scan method that can generate test patterns for path delay faults offectively. We implemented a new partial enhanced scan method based on an automatic test pattern generator(ATPG) which uses implication and justification . First. we generate test patterns in the standard scan environment. And if test patterns are not generated regularly in the scan chain, we determine flip-flops which applied enhanced scan flip-flops using the information derived for running an automatic test pattern generator inthe circuti. Determming enhanced scan flip-flops are based on a fault coverage or a hardware overhead. through the expenment for JSCAS 89 benchmark sequential circuits, we compared the fault coverage in the standard scan enviroment and enhance scan environment, partial enhanced scan environment. And we proved the effectiveness of the new partial enhanced scan method by identifying a high fault coverage.

  • PDF