• 제목/요약/키워드: Schwann cells

검색결과 131건 처리시간 0.031초

마우스 배아에서 슈반세포-뉴런 네트워크의 분리와 슈반세포의 분리 (Isolation of Schwann Cell and Separation of Schwann Cell-Neuron Network from Mouse Embryo)

  • 권태동;사영희;홍성갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.943-945
    • /
    • 2013
  • 슈반세포의 수초화에 대한 연구는 일차 슈반세포의 분리와 배양의 성공에 의해 가능해지고 있다. 본 연구에서는 슈반세포의 근원으로서 마우스 배아의 척수신경절이 사용되었다. 이 방법에는 세 가지 단계가 있다. 첫 단계는 배아의 척수신경절의 파쇄이고 두 번째 단계는 섬유아세포로부터 슈반세포-뉴런 연합체의 기계적인 분리에 의한 슈반세포의 전구세포의 확장이며 세 번째 단계는 뉴런으로 부터 슈반세포의 분리와 분리된 슈반세포의 확장이다. 우리는 본 과정을 통해 짧은 시간이내에 슈반세포-뉴런 연합체와 슈반세포를 고순도로 분리하였다.

  • PDF

혈관내에 배양한 신경줄기세포의 이식이 말초신경 재생에 미치는 영향 (Effect of Transplantation of Intravascular Cultured Neural Stem Cell upon Peripheral Nerve Regeneration)

  • 양영철;김우일;박중규;배기원
    • 생명과학회지
    • /
    • 제12권3호
    • /
    • pp.306-316
    • /
    • 2002
  • 흰쥐의 좌골신경을 절단한 후 혈관내에서 배양한 신경줄기세포를 이식하여 말초신경에서도 수초의 재생이 일어나는지를 형태 학적으로 규명하고 배양한 신경줄기 세포들로부터 분화한 Schwann cell들이 회복할 수 있는지를 조사하여 다음과 같은 결론을 얻었다. 이식한 20일 후 동맥내 배양한 신경줄기세포는 Schwann cell로 분화하여 신경섬유의 재생이 일어나기 시작하였다. Schwann cell은 증식 후 재수초화를 형성하기 위하여 다른 Schwann cell들로부터 여러 가지를 자극을 받고 있었으며 NGF 소견으로 볼 때 신경외막으로부터 기존의 Schwann cell로부터 신경줄기세포의 분화가 유도되었으며 PCNA 반응으로 볼 때도 기존의 신경섬유의 Schwann cell주위에서부터 증식이 일어났다. 미세구조적으로는 Schwann cell의 재수초화, 축삭내 사립체와 미세소관의 수의 증가를 관찰할 수 있었다.

Double-stranded RNA Induces Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Park, Chan-Hee;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.253-257
    • /
    • 2004
  • Schwann cells play an important role in peripheral nerve regeneration. Upon neuronal injury, activated Schwann cells clean up the myelin debris by phagocytosis, and promote neuronal survival and axon outgrowth by secreting various neurotrophic factors. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that certain cytoplasmic molecules, which are secreted by cells undergoing necrotic cell death, induce immune cell activation via the toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. Accordingly, this study was undertaken to examine the expression and the function of the TLRs on primary Schwann cells and iSC, a rat Schwann cell line. The transcripts of TLR2, 3, 4, and 9 were detected on the primary Schwann cells as well as on iSC. The stimulation of iSC with poly (I : C), a synthetic ligand for the TLR3, induced the expression of $TNF-{\alpha}$ and RANTES. In addition, poly (I : C) stimulation induced the iNOS expression and nitric oxide secretion in iSC. These results suggest that the TLRs may be involved in the inflammatory activation of Schwann cells, which is observed during Wallerian degeneration after a peripheral nerve injury.

Coculture of Schwann Cells and Neuronal Cells for Myelination in Rat

  • Kim, Ji-Young;Choi, Chang-Shik;Hong, Seong-Karp
    • Rapid Communication in Photoscience
    • /
    • 제3권3호
    • /
    • pp.48-49
    • /
    • 2014
  • For in vitro myelination system, Schwann cells and neuronal cells of rat were cocultured. Schwann cells and neuronal cells, respectively, were obtained from dorsal root ganglion of rat embryos (E15). This method includes four steps: first step of suspension of the embryonic dorsal root ganglion cells, second step of addition of anti-mitotic cocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells. We made a highly purified population of myelination in a short period through this procedure and identified myelination basic protein using antibody of myelination basic protein.

슈반세포와 뉴런세포을 이용한 수초화의 확인 (Identification of Myelination using Schwann Cells and Neuron Cells)

  • 김지영;사영희;홍성갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.989-992
    • /
    • 2014
  • 쥐에서 슈반세포와 뉴런세포를 이용한 수초화가 수행되었다. 슈반세포와 뉴런 세포는 쥐의 배아(임신 16일)의 척수신경절로 부터 각각 분리되어 배양되었다. 배아의 척수신경절이 배양되었고 항 유사분열제가 첨가되었다. 분리 정제된 배아의 슈반세포가 배양되었고 이것은 분리 정제된 배아의 척수신경절 세포에 첨가되었다. 실험실상에서 분리 정제된 수초화 군을 완성할 수 있었다. 뉴로필라멘트 단백질의 항체를 이용하여 수초화의 형성되었음을 확인하였다.

  • PDF

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

인회석 박막 피복 도관과 Brain-derived neurotrophic factor(BDNF) 유전자 이입 슈반세포를 이용한 백서 좌골신경 재생에 관한 연구 (SCIATIC NERVE REGENERATION USING CALCIUM PHOSPHATE COATED CONDUIT AND BRAIN-DERIVED NEUROTROPHIC FACTOR GENE-TRANSFECTED SCHWANN CELL IN RAT)

  • 최원재;안강민;황순정;정필훈;김명진;김남열;유상배;장정원;김현만;김중수;김윤희;김성민;이종호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권3호
    • /
    • pp.199-218
    • /
    • 2005
  • Purpose of Study: Peripheral nerve regeneration depends on neurotrophism of distal nerve stump, recovery potential of neuron, supporting cell like Schwann cell and neurotrophic factors such as BDNF. Peripheral nerve regeneration can be enhanced by the conduit which connects the both sides of transected nerve. The conduit maintains the effects of neurotrophism and BDNF produced by Schwann cells which can be made by gene therapy. In this study, we tried to enhance the peripheral nerve regeneration by using calcium phosphate coated porous conduit and BDNF-Adenovirus infected Schwann cells in sciatic nerve of rats. Materials and Methods: Microporous filter which permits the tissue fluid essential for nerve regeneration and does not permit infiltration of fibroblasts, was made into 2mm diameter and 17mm length conduit. Then it was coated with calcium phosphate to improve the Schwann cell adhesion and survival. The coated filter was evaluated by SEM examination and MTT assay. For effective allogenic Schwann cell culture, dorsal root ganglia of 1-day old rat were extracted and treated with enzyme and antimitotic Ara-C. Human BDNF cDNA was obtained from cDNA library and amplified using PCR. BDNF gene was inserted into adenovirus shuttle vector pAACCMVpARS in which E1 was deleted. We infected the BDNF-Ad into 293 human mammary kidney cell-line and obtained the virus plaque 2 days later. RT-PCR was performed to evaluate the secretion of BDNF in infected Schwann cells. To determine the most optimal m.o.i of BDNF-Ad, we infected the Schwann cells with LacZ adenovirus in 1, 20, 50, 75, 100, 250 m.o.i for 2 hours and stained with ${\beta}$-galactosidase. Rats(n=24) weighing around 300g were used. Total 14mm sciatic nerve defect was made and connected with calcium phosphate coated conduits. Schwann cells$(1{\times}10^6)$ or BDNF-Ad infected Schwann cells$(1{\times}10^6)$ were injected in conduit and only media(MEM) was injected in control group. Twelve weeks after surgery, degree of nerve regeneration was evaluated with gait analysis, electrophysiologic measurements and histomorphometric analysis. Results: 1. Microporous Millipore filter was effective conduit which permitted the adhesion of Schwann cells and inhibited the adhesion of fibroblast. We could enhance the Schwann cell adhesion and survival by coating Millipore filter with calcium phosphate. 2. Schwann cell culture technique using repeated treatment of Ara-C and GDNF was established. The mean number of Schwann cells obtained 1 and 2 weeks after the culture were $1.54{\pm}4.0{\times}10^6$ and $9.66{\pm}9.6{\times}10^6$. 3. The mRNA of BDNF in BDNF-Ad infected Schwann cells was detected using RT-PCR. In Schwann cell $0.69\;{\mu}g/{\mu}l$ of DNA was detected and in BDNF-Adenovirus transfected Schwann cell $0.795\;{\mu}g/{\mu}l$ of DNA was detected. The most effective infection concentration was determined by LacZ Adenovirus and 75 m.o.i was found the most optimal. Conclusion: BDNF-Ad transfected Schwann cells successfully regenerated the 14mm nerve gap which was connected with calcium phosphate coated Millipore filter. The BDNF-Ad group showed better results compared with Schwann cells only group and control group in aspect to sciatic function index, electrophysiologic measurements and histomorphometric analysis.

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제17권3호
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

랫트에서 수초화를 위한 슈반세포와 뉴런세포의 공동배양 (Coculture of Schwann Cells and Neuronal Cells for Myelination in Rat)

  • 권태동;사영희;홍성갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.822-825
    • /
    • 2014
  • 시험내 수초화 시스템을 만들기 위해 쥐에서 슈반세포와 뉴런세포의 공동 배양이 완성되었다. 슈반세포와 뉴런 세포는 각각 쥐의 배아(임신 15일)의 척수신경절로 부터 분리되었다. 이 방법은 4단계로 이루어져 있다. 1단계는 쥐배아의 척수신경절를 부유시키는 단계, 2단계는 유사분열억제제를 첨가하는 단계, 3단계는 척수신경절 세포를 순수 분리하는 단계, 4단계는 척수신경절 세포에 슈반세포를 첨가하는 단계이다. 우리는 단기간 내에 고 순도의 수초화 군을 생성하였으며 이렇게 생성된 수초화 단백질을 수초 기본 단백질(myelination basic protein)의 항체를 이용하여 확인하였다.

  • PDF

이등제통탕(二藤除痛湯)이 Taxol 처리 및 좌골신경의 압박 손상 후 유발된 랫드의 말초신경병증에 미치는 영향 (Effects of YideungJetong-Tang on Peripheral Neuropathy Induced by Taxol and Compression Injury in the Rat Sciatic Nerve)

  • 정호영;김철중;조충식
    • 대한한의학회지
    • /
    • 제33권3호
    • /
    • pp.133-146
    • /
    • 2012
  • Background: Most antitumor agents have the side effect of chemotherapy-induced peripheral neuropathy (CIPN). Cancer patients who take antitumor agents suffer from CIPN, but there is no known treatment for it. Unlike the central nerve system, the peripheral nerve can self-repair, and the Schwann cell takes this mechanism. Objectives: In this study, we researched the effect of YideungJetong-Tang (YJT) extract on taxol-induced sciatic nerve damage, through in vitro and in vivo experiments. Also, we studied the effect of YJT extract on neurite recovery and anti-inflammatory effect after compression injury of sciatic nerve in vivo. Methods: Vehicle, taxol and taxol+YJT were respectively applied on sciatic nerve cells of rat in vitro, then the cells were cultured. The sciatic nerve cells and Schwann cells were then observed using Neurofilament 200, Hoechst, ${\beta}$ -tubulin, S-$100{\beta}$, caspase-3 and phospho-Erk1/2. CIPN was induced by taxol into the sciatic nerve of rat in vivo, then YJT extract was taken orally. The axons, Schwann cells and neurites of the DRG sensory nerve were then observed using Neurofilament 200, ${\beta}$-tubulin, Hoechst, S-$100{\beta}$, phospho-Erk1/2 and caspase-3. YJT was taken orally after sciatic nerve compression injury, and the changes in axon of the sciatic nerve, Schwann cells and TNF-${\alpha}$ concentration were observed. Results: The taxol and YJT treated group showed significant effects on Schwann cell recovery, neurite growth and recovery. In vivo, YJT compared with control group showed Schwann cell structural improvement and axons recovering effect after taxol-induced Schwann cell damage. After sciatic nerve compression injury, recovery of distal axon, changes of Schwann cell distribution, and anti-inflammatory response were observed in the YJT. Conclusions: Through this study, we found that after taxol-induced neurite damage of sciatic nerve in vivo and in vitro, YJT had significant effects on sciatic nerve growth and Schwann cell structural improvement. In vivo, YJT improved recovery of distal axons and Schwann cells and had an anti-inflammatory effect.