• 제목/요약/키워드: Scintillation discharge

검색결과 8건 처리시간 0.029초

옥외 애자용 재료의 표면 전기전도특성 (Properties of Surface Electrical Conduction in Materials for Outdoor Insulator)

  • 박영국;강성화;정수현;이운석;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition. The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

LDPE에서 부시형 전기트리의 성장에 수반되는 부분방전 펄스의 특성 (Properties of PD Pulses accompanying with propagation of Bush-type tree in LDPE)

  • 박영국;강성화;정수현;박철현;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition, The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level. the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

절대유량법(ASFM)을 이용한 저낙차.카플란 수차효율측정 적용사례 연구 (Case study of a low head & kaplan turbine efficiency measurement using ASFM)

  • 이용준;오석영;신창식;현정재
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.205.1-205.1
    • /
    • 2011
  • This study concerns a low head and kaplan turbine efficiency measurement using the acoustic scintillation flow meter(ASFM). The ASFM is one of absolute discharge measurement methods because it measures velocity-area of discharge with couples of transducers. This study shows that the highest efficiency of turbine is 87.7% and the efficiency is 85.8% in the rated output(600kW). The test result is reliable because the efficiency trend from this test is similar to the result of index test conducted in 1986. In this paper, the principle, measurement methods, application and test procedures of the test are discussed.

  • PDF

옥외 애자용 재료의 표면 전기전도 특성 (Electrical Conduction Properties of Surface in Materials for Outdoor Insulator)

  • 박영국;이운석;정수현;장동욱;임기조
    • 한국전기전자재료학회논문지
    • /
    • 제11권10호
    • /
    • pp.758-762
    • /
    • 1998
  • Electrical conduction property of insulator surface is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the materials to be used for outdoor insulator such as porcelain, EPDM, silicone rubber was discussed by measuring properties of average leakage current and scintillation discharge pulses under salt fog conditions. The fog was applied by nozzle in chamber and fogging fluids were deionized distilled water, 0.5wt% NaCI solution and 2wt% NaCl solution. The average leakage current showed linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage were much different to those in case of dry and clean condition with 2wt% salt fog. In case of slat fog pollution condition, the leakage current was increased above critical voltage. the scintillation discharges were also activated at the level. The leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

ASFM을 이용한 수차유량의 측정 (Turbine discharge measurement case study using ASFM system)

  • 김응태;정용채;박장원
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.49-52
    • /
    • 2006
  • should be in English, A make out an economical, reliable and easy to adoptable instrument in turbine discharge measurement was restricted from lots of it's foundational condition. Not with standing the brilliant progress in new technology of these day, useful instrument for flow measurement in turbine is still ongoing. Nowaday, the increasing importance of renewable energy makes it more important that the measuring turbine efficiency as a decision making index of old turbines' replacement. In Turbine performance diagnosis, Kwater(Korea Water Corporation) got an enough ability and decent reputation for who has invested lots of time and effort for buildup and development. In Korea as a public corporation who should take a crucial roll in Turbine business, Kwater has introduced some developed new technology for other domestic concerned one. With this writing, I'd like to introduce ASFM system as a newly developed instrument that can cope with lots restriction in discharge measurement in turbine. Kwater adopted the system in 2005, and performed 2 times of trial test. The test result was good enough to use the system as a reference test method.

  • PDF

표면방전 현상의 적외선 카메라 관측에 관한 연구 (A Study on the Observation of IRR Camera in Surface Discharge Image)

  • 임장섭;김진국;김현종;이우선;이진;김덕근;이학현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.563-566
    • /
    • 2003
  • The conventional testing as IEC-60587 is widely used in suface aging measurement of outside insulator those testing can carry out very short time in Lab testing. Also IEC-60587 testing is able to offer the standard judgement of relative degradation level of out side HV machine. Therefore it is very useful method compare to previous conventional tracking testing method and effective Lab testing method, But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR Camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis.

  • PDF

전계해석과 기체방전 이론을 기반으로 한 Polyvinyl-Chloride-Sheathed Flat Cord 표면의 트래킹 진전 메커니즘 (Tracking Propagation Mechanism on the Surface of Polyvinyl-Chloride-Sheathed Flat Cord based on Electric Field Analysis and Gas Discharge Physics)

  • 임동영;박혜리;지승욱
    • 한국화재소방학회논문지
    • /
    • 제33권2호
    • /
    • pp.30-38
    • /
    • 2019
  • 전기 화재의 주요 원인 중 하나인 트래킹은 전기적 방전에 의한 물리적 현상으로 인식된다. 따라서 트래킹은 전계해석, 전자생성에 의한 도전성 경로, 기체방전이론을 기반으로 설명되어야 한다. 하지만, 이러한 사항을 반영한 연구논문은 드물다. 본 논문은 트래킹 진전에서 그들의 영향을 포함한 트래킹 진전 메커니즘을 제안하였다. 그 메커니즘의 제안을 위해, 트래킹 실험, 탄화진전 모델에 대한 전계해석, 연면방전 이론을 적용한 트래킹 진전과정에 대한 설명이 수행되었다. 트래킹 모의실험으로부터, 코로나 방전에서 트래킹 파괴까지 트래킹 진전의 각 단계에서 전류파형이 측정되었다. 전계해석은 탄화의 발생과 진전과정동안 건조대 표면의 전계와 전자생성을 위한 고전계 영역을 파악하기 위해 수행되었다. 본 논문에서 제안된 트래킹 메커니즘은 코로나 방전에 의한 전자사태, 양이온의 축적, 전자사태의 확장, 2차 전자사태, 스트리머, 도전성 경로에 의한 트래킹 파괴의 6단계로 구성된다. 트래킹 모의실험에서 측정된 펄스성 전류파형은 제안된 트래킹 메커니즘에 의해 설명될 수 있었다. 본 연구 결과는 화재의 원인인 트래킹을 검출하고, 내트래킹성을 높이는 데 필요한 기술 자료가 될 것이다.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • 윤원섭;이상우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF