• Title/Summary/Keyword: Scour Depth

Search Result 159, Processing Time 0.025 seconds

Experimental Study on Local Scour around Bridge Piers by Scour Protection Devices (세굴보호장치에 의한 교각주위의 국부세굴 실험)

  • 최기봉;김응용
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.126-131
    • /
    • 2000
  • This study based on the laboratory works, analyzes factors affecting local scour in order to understand various characteristics of the local scour surrounding bridge piers. Attached with scour protection device as a method for decreasing local scour, it carries out the laboratory experiments and calculates the scour depth. From the experiments attached with the scour protection devices, it seems possible to reduce the scour depth as the protecting plate, column and sacrificial piles are built in the same height with flume bed at pier or footing upstream interrupted falling-flow. And then it could reduce scour depth. The paper presents the following research results: First, the decreasing degree of scour depth is in order of protecting column, protecting plate, sacrificial piles and non-protecting facilities. However, it shows no meaningful difference between protecting column and protecting plate. Second, when $L_p/b$=0.5~1, the decreasing effect of scour depth reached the maximum of 40 percents.

  • PDF

Scour-monitoring techniques for offshore foundations

  • Byuna, Yong-Hoon;Parkb, Kiwon;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.667-681
    • /
    • 2015
  • The scour induced by strong currents and wave action decreases the embedded length of monopiles and leads to a decrease of their structural stability. The objective of this study is the development and consideration of scour-monitoring techniques for offshore monopile foundations. Tests on physical models are carried out with a model monopile and geo-materials prepared in a cylindrical tank. A strain gauge, two coupled ultrasonic transducers, and ten electrodes are used for monitoring the scour. The natural frequency, ultrasonic reflection images, and electrical resistivity profiles are obtained at various scour depths. The experimental results show that the natural frequency of the model monopile decreases with an increase in the scour depth and that the ultrasonic reflection images clearly detect the scour shape and scour depth. In addition, the electrical resistivity decreases with an increase in scour depth. This study suggests that natural frequency measurement, ultrasonic reflection imaging, and electrical resistivity profiling may be used as effective tools to monitor the scour around an offshore monopile foundation.

Temporal Variation of Local Scour Depth in the Downstream of Weir with Shapes (보 형상 변화에 따른 하류부 세굴의 시간적 변화)

  • Yeo, Chang Geon;Lee, Seungoh;Yoon, Sei Eui;Song, Jai Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.353-360
    • /
    • 2011
  • The objectives of this study were to analyzes temporal variation of local scour depth in the downstream of weir with shapes. Prediction of maximum or equilibrium scour depth was the main focus of engineers and researchers in the downstream of weir. However, it is necessary to analyzes temporal variation of local scour depth in the downstream of weir to predict real time scour depth. Experiment were performed with various weir shapes like sharp crest and inclined stepped with time variation and non-dimensional scourhole shapes, scour depths were proposed. A formula for predicting scour depths with temporal variation for weir were proposed through non-linear regression analysis. Temporal variation of scour depths could be estimated with suggested formula and 4 input data (Equilibrium scour depth, weir height, overflow depths, and water depth downstream). Suggested formula could make it possible to design a apron and bed protection economically in the downstream of a weir by considering flood duration time.

An Experimental Study on Local Scour Around Group Pile Foundation (군말뚝 주변의 국부세굴에 관한 연구)

  • Yun, Byeong-Man;Seo, Jeong-Pil;No, Yeong-Sin
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.641-649
    • /
    • 2001
  • This study analyzed the general scour characteristics around group pile foundations through laboratory experiments. The experiments were performed for the pile groups consisting of 4, 9, 15 and 35 piles to investigate the effects of pile number, mean velocity and the angle of attack on the scour hole shape, and the magnitude and the position of maximum scour depth. Results reveal that the maximum scour depth for 4 and 9 piles have almost same values with single pier case regardless of approach velocity. The scour depth for 15 and 35 piles, however, increases as the mean velocity increases and reaches up to 2.2 times of maximum scour depth for single pier case. As the number of piles increase, the single scour holes are superposed and the overall scour hole turned out to be rectangular shape. The experimental results for the case of 35 piles indicate that the scour depth has the maximum value at angle of attack of 35 degree and that the main scour hole is formed in diagonal direction.

  • PDF

Applicability Evaluation on the Analytical Formulas of the Scour Depth Estimation in the Bight River (교량세굴심 산정을 위한 만곡부하천에서의 산정식 적용성 평가)

  • Park, Soo-Jin;Park, Jae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4845-4852
    • /
    • 2012
  • This research calculated the scour depth of bridge according to inflow and outflow changes of stream's flood discharge and curves by applying scour depth formula for piers and abutments, and by comparing and examining them, evaluated the applicability of scour depth formulas. Overall, if the angles of flood discharge and inflow and outflow increase, the deviation rate of scour depth in bight increased. Especially the deviation rate was 58% at the inflow and outflow angle of $105^{\circ}$ that the bridge plan for this geography need careful examination. Next, as a result of calculating the deviation rate of scour depth at the bight by scour depth formulas, in case of pier, Andru formula showed 58% deviation rate, Laursen formula showed 26% deviation rate, and CSU. formula showed 17% deviation rate. In the case of abutment, Froehlich formula shows 44% deviation rate that when applying above scour depth formulas, scour depth calculation considering repairable characteristics of bight is necessary. Finally, about inflow and outflow angles of $45^{\circ}{\sim}135^{\circ}$ that showed big deviation rate of scour depth, this research performed regression analysis of deviation rates of scour depth due to flood discharge to suggest the regression formula.

Review on Applicability of Local Scour Depth Calculation Formula in River (하천 세굴심 산정을 위한 교각 세굴심 산정식의 적용성 검토)

  • Min, ByungYun;Chang, HyungJoon;Lee, HoJin;Kim, SungDuk
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • The basic analysis of Soil and structural mechanics for the bridge substructure affected by the flow of water is sufficient in the construction of such bridges, but the stability of scour resulting from hydraulic phenomena is insufficient. In addition, it is not enough to estimate the scour depth of the bridge which reflects the watershed characteristics of the domestic river because it uses the formula for calculating the scour depth of the overseas piers in calculating the scour depth of the bridge. In this study, the application of the CSU (1993) formula, which is currently applied to the national river design criteria, was reviewed between the two formulas after calculating the scour after calculating the scour by applying another bridge deck scour calculation formula to take into account the uncertainty in the calculation of scour. In this study, in addition to the CSU (1993) formula, which is currently applied to Korean river design criteria, another scour depth calculation formula is applied to calculate uncertainty in scour depth calculation, was reviewed between the two formulas. The review confirmed that the SSE (%) showed a difference of at least 2.08%, up to 91.23%, and SSEn(%) at least 0.19%, up to 415.91%, when compared to the measured depth of the pier based on the hydraulic model experiment and the depth of the pier calculated with the nine scour depth formulas in use. In other words, it is confirmed that there are many differences between the scouring formulas of piers. The results of this study are expected to be used to estimate scour depth in future river design.

Statistical Characteristics of Pier-Scour Equations for Scour Depth Calculation (교각세굴심 산정 공식의 통계적 특성)

  • Lee, Ho Jin;Chang, Hyung Joon;Heo, Tae Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • In recent years, the occurrence of localized torrential rain has increased due to the increase in heavy rainfall and massive typhoons caused by abnormal weather. As a result, the flow rate of small and medium-sized rivers in Korea is rapidly increasing, affecting the safety of bridges and increasing the risk of scour. However, the domestic bridge construction technology does not reflect the watershed characteristics of domestic rivers because the bridge scour depth calculation formula developed overseas is used to calculate the bridge scour depth. Therefore, this study is a basic study for prevention of bridge damage according to scouring phenomenon, and a comparative analysis was performed between the experimental data measured through hydraulic model test and the scour depth formulas applied in Korea. In addition, the statistical analysis between experimental data and scour depth formula shows that Coleman's (1971) formula estimates the best scour depth. The results of this study are expected to be used to calculate more accurate bridge scour depth in river design and bridge design.

Examination on the Experimental Prediction of Scour Depths Caused by Jets (\ulcorner㈎\ulcorner의한 세굴깊이의 실험적 예측에 대한 고찰)

  • Son, Kwang-Ik;Yoon, Se-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.743-751
    • /
    • 1997
  • A thorough literatural review of researches on the experimental prediction of scour depths caused by jets was carried out to find out a measure of scour prediction. A new experimental equation for predicting scour depths due to a vortical or an inclined jet was developed from five hundreds of experimental data which were carefully reviewed and adopted from the previous researches. The developed equation shows 0.941 statistical correlation coefficient. It was found that the parameters governing the scour depth were the size of bed material, flow rate through unit width of spillway, and head drop across structure. The predicted scour depth could be expressed as the deepest scouring depth below tail water surface with correlation coefficient ${\gamma}$ = 0.941.

  • PDF

An Analysis of Long-Term Bed Elevation Changes to Estimate Total Scour Depth at Bridge Site (교량에서의 총세굴깊이 산정을 위한 장기하상변동분석)

  • Lee, Jae-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.721-729
    • /
    • 1997
  • Total scour depth at a bridge is comprised of three components: long-term changes, contraction scour and local scour. Therefore, the analysis of long-term bed elevation changes is very important in the estimation of total scour depth at bridge sites. In this research, long-term bed elevation changes at the Namhan River Bridge are analysed using CHARIMA and HEC-6 models. The results show that, for 5-year steady normal stream flow, the bed elevation is aggreded by 45cm for CHARIMA model but degraded by 5cm for HEC-6 model. For 5-year unsteady flow, the bed elevation is changed greatly and it has a great influence on the estimation of total scour depth. Therefore, to make a proper estimation of total scour depth, not only contraction scour and local scour, but also long-term bed elevation changes should be estimated precisely.

  • PDF

Experimental Estimation of Shear Stresses at Pier-Front (교각전면부 하상재료의 입도분포에 따른 전단응력 산정에 관한 실험적 연구)

  • Park, Yoon Sung;Kang, Jun Ku;Yeo, Woon Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • According to researchers, the influential factors of scouring are generally divided into three factors: the flow conditions, the type and position of structures, and the characteristics of bed materials. In addition, scouring is affected by the 3-dimensional turbulent boundaries, the unsteady flow, the movement of sediment in the scour-hole area, the approach flow velocity and depth, the width of bridge foundation/pier, and the particle size of bed materials. However, it is difficult to estimate the scour depth near bridge piers when all conditions are factored in at once. Therefore, for reasonably accurate estimates of scour depth, it is essential to consider sufficiently the flow force and resisting force for scour. That is, to determine the shear stress concerning the bed material distribution is needed. In this study, the experiments were performed under the condition of a steady state of flow. As a result, scouring occurred at velocity ratios of 0.476,$(V/V_c=0.476)$, and the scour depth was increased linearly as the velocity ratio increased. in addition, the average values of shear stress ratio at zero scouring depth in both rectangular and circular piers were approximately 7$(\tau_c/\tau_{approach})$ and in the case for same size bed particle material. The results of this study can be used for the fundamental material for estimating the scour depth of bed materials.

  • PDF