• Title/Summary/Keyword: Sea surface salinity

Search Result 387, Processing Time 0.02 seconds

Accuracy and Error Characteristics of SMOS Sea Surface Salinity in the Seas around Korea

  • Park, Kyung-Ae;Park, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.356-366
    • /
    • 2020
  • The accuracy of satellite-observed sea surface salinity (SSS) was evaluated in comparison with in-situ salinity measurements from ARGO floats and buoys in the seas around the Korean Peninsula, the northwest Pacific, and the global ocean. Differences in satellite SSS and in-situ measurements (SSS errors) indicated characteristic dependences on geolocation, sea surface temperature (SST), and other oceanic and atmospheric conditions. Overall, the root-mean-square (rms) errors of non-averaged SMOS SSSs ranged from approximately 0.8-1.08 psu for each in-situ salinity dataset consisting of ARGO measurements and non-ARGO data from CTD and buoy measurements in both local seas and the ocean. All SMOS SSSs exhibited characteristic negative bias errors at a range of -0.50- -0.10 psu in the global ocean and the northwest Pacific, respectively. Both rms and bias errors increased to 1.07 psu and -0.17 psu, respectively, in the East Sea. An analysis of the SSS errors indicated dependence on the latitude, SST, and wind speed. The differences of SMOS-derived SSSs from in-situ salinity data tended to be amplified at high latitudes (40-60°N) and high sea water salinity. Wind speeds contributed to the underestimation of SMOS salinity with negative bias compared with in-situ salinity measurements. Continuous and extensive validation of satellite-observed salinity in the local seas around Korea should be further investigated for proper use.

Paleo-Tsushima Water influx to the East Sea during the lowest sea level of the late Quaternary

  • Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.714-724
    • /
    • 2005
  • The East Sea, a semi-enclosed marginal sea with shallow straits in the northwest Pacific, is marked by the nearly geographic isolation and the low sea surface salinity during the last glacial maximum (LGM). The East Sea might have the only connection to the open ocean through the Korea Strait with a sill depth of 130 m, allowing the paleo-Tsushima Water to enter the sea during the LGM. The low paleosalinity associated with abnormally light $\delta^{18}O$ values of planktonic foraminifera is interpreted to have resulted from river discharge and precipitation. Nevertheless, two LGM features in the East Sea are disputable. This study attempts to estimate volume transport of the paleo-Tsushima Water via the Korea Strait and further examines its effect on the low sea surface salinity (SSS) during the lowest sea level of the LGM. The East Sea was not completely isolated, but partially linked to the northern East China Sea through the Korea Strait during the LGM. The volume transport of the paleo-Tsushima Water during the LGM is calculated approximately$(0.5\~2.1)\times10^{12}m^3/yr$ on the basis of the selected seismic reflection profiles along with bathymetry and current data. The annual influx of the paleo-Tsushima Water is low, compared to the 100 m-thick surface water volume $(about\;79.75\times10^{12}m^3)$ in the East Sea. The paleo-Tsushima Water influx might have changed the surface water properties within a geologically short time, potentially decreasing sea surface salinity. However, the effect of volume transport on the low sea surface salinity essentially depends on freshwater amounts within the paleo-Tsushima Water and excessive evaporation during the glacial lowstands of sea level. Even though the paleo-Tsushima Water is assumed to have been entirely freshwater at that time period, it would annually reduce only about 1‰ of salinity in the surface water of the East Sea. Thus, the paleo-Tsushima Water influx itself might not be large enough to significantly reduce the paleosalinity of about 100 m-thick surface layer during the LGM. This further suggests contribution of additional river discharges from nearby fluvial systems (e.g. the Amur River) to freshen the surface water.

Correction of Aquarius Sea Surface Salinity in the East Sea (Aquarius 염분 관측 위성에 의한 동해에서의 표층 염분 보정)

  • Lee, Dong-Kyu
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.259-270
    • /
    • 2016
  • Sea Surface Salinity (SSS) observations from the Aquarius satellite in the East Sea show large systematic biases mainly caused by the surrounding lands and Radio Frequency Interferences (RFI) along the descending orbits on which the satellite travels from the Asian continent to the East Sea. To develop a technique for correcting the systematic biases unique to the East Sea, the least square regression between in situ observations of salinity and the reanalyzed salinities by HYCOM is first performed. Then monthly mean reanalyzed salinities fitted to the in situ salinities are compared with monthly mean Aquarius salinities to calculate mean biases in $1^{\circ}{\times}1^{\circ}$ boxes. Mean biases in winter (December-March) are found to be considerably larger than those in other seasons possibly caused by the inadequate correction of surface roughness in the sea surrounded by the land, and thus the mean bias corrections are performed using two bias tables. Large negative biases are found in the area near the coast of Japan and in the areas with islands. In the northern East Sea, data sets using the ascending orbit only (SCIA) are chosen for correction because of large RFI errors on the descending orbit (SCID). Resulting mean biases between the reanalysis salinities fitted to in situ observations and the bias corrected Aquarius salinities are less than 0.2 psu in all areas. The corrected mean salinity distributions in March and September demonstrate marked improvements when compared with mean salinities from the World Ocean Atlas (WOA [2005-2012]). In September, salinity distributions based on the corrected Aquarius and on the WOA (2005-2012) show similar distributions of Changjiang Diluted Water (CDW) in the East Sea.

Long Term Trend of Change In Water Temperature and Salinity in Coastal Waters around Korean Peninsula (한반도 근해 수온 및 염분의 장기변화 추이)

  • Jeong, Hee-Dong;Hwang, Jae-Dong;Jung, Kyu-Kui;Heo, Seung;Sung, Ki-Tach;Go, Woo-Jin;Yang, Jun-Yong;Kim, Sang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.59-64
    • /
    • 2003
  • The long­term trend and inter­relationship with depth of temperature and salinity in coastal waters of Korea are studied using coastal oceanographic observation and serial oceanographic data measured by National Fisheries Research and Development Institute. Temperature of coastal waters of Korea except south­western sea of Korea where cold water appears to increase in summer. In case of temperature offshore, surface temperature of East Sea increases, the reverse, for 50m and 100m decreases. Temperature in South Sea of Korea increases in whole depth and for the Yellow Sea, surface temperature increases, but for 50m decreases. In case of salinity offshore, surface salinity of East Sea decreases, but for 50m increases. Surface salinity in South Sea of Korea decreases, the reverse, form 50m and 100m increases. salinity in the Yellow Sea decrease in whole depth According to the result of inter­relationship analysis, for temperature relationship coefficients of 50m and 100m in the East Sea and South Sea of Korea is higher, however, for the Yellow sea the inter­relationship between 50m and 100m is lower. In case of salinity, the inter­relationship between surface and 50m, and for the South Sea of Korea, between 50m and 100m, and for the Yellow Sea, between surface and 50m is higher.

  • PDF

Variability of Surface Water Properties in the Japan/East Sea on Different Time Scales

  • Ponomarev, Vladimir;Rudykh, Natalya;Dmitrieva, Elena;Ishida, Hajime
    • Ocean and Polar Research
    • /
    • v.31 no.2
    • /
    • pp.177-187
    • /
    • 2009
  • This study examined the multi-scale variabilities of sea surface temperature (SST) and salinity in the Japan/East Sea (JES) based on statistical analyses of observational data, with a focus on the northwestern part of the sea. The regionality of JES SST variability was estimated for different frequency ranges on semimonthly (11-17 days), monthly to seasonal (30-90 days), quasi-semiannual (157-220 days), and quasi-biennial (1.5-3 years) time scales using cluster analyses of daily gridded SST data for 1996 to 2007 from the Japan Meteorological Agency (JMA). Several significant peaks and regional cores were found in each frequency range of the SST anomaly (SSTA) oscillations. Quasi-semiannual SSTA oscillations with high amplitude were found in the south-southwestern part of the Japan Basin ($41-43^{\circ}N$) and were amplified in the area adjacent to Peter the Great Bay. Oscillations with periods of 79 and 55 days also prevailed over the southwest Japan Basin between the Yamato Rise and the continental slope. A similar method was applied to classify SST and the annual cycle of surface salinity using Generalized Digital Environmental Model (GDEM) gridded data. The Tatarskii Strait and adjacent area showed the most specific annual cycles and variability in salinity on interannual to interdecadal time scales. The most significant inverse relationship between surface salinity in the Tatarskii Strait and southern JES areas was found on the interdecadal time scale. Linkages of sea water salinity in the Tatarskii Strait with Amur River discharge and wind velocity over Amurskii Liman were also revealed.

Oceanographic Conditions in the Neighboring Seas of Cheju Island and the Appearance of Low Salinity Surface Water in May 2000 (2000년 5월 제주도 주변해역의 해황 및 표층 저염분수의 출현)

  • KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.148-158
    • /
    • 2004
  • In the adjacent seas of Cheju Island, the oceanographic conditions show low salinity surface waters starting in May. This water flows from the southeast part of the China Coastal Water, which flows southeastward along the Great Yangtze Sand Bank until April, with the help of southeasterly winds and flows from the adjacent sea off Cheju Island. In May, the Tsushima Warm Current and the low salinity surface water fluctuate in short and long-term periods as influenced by Yellow Sea Cold Water, which flows to the bottom layer at the western entrance of Cheju Strait. Temperature and salinity fronts in the northeastern sea area of U Island are formed in the boundary area between the Tsushima Warm Current, which expands towards Cheju Island from the southeastern sea area of Cheju Island and Hows out from the eastern entrance of the strait. Seasonally, additional oceanographic conditions, such as coastal counter-currents, which flow southward, appears within limited areas in the adjacent eastern and western seas of Cheju Island.

Evaluation of Temperature and Salinity Fields of HYCOM Reanalysis Data in the East Sea (HYCOM 재분석 자료가 재현한 동해 수온 및 염분 평가)

  • Hong, JinSil;Seo, Seongbong;Jeon, Chanhyung;Park, Jae-Hun;Park, Young-Gyu;Min, Hong Sik
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.271-286
    • /
    • 2016
  • We evaluate the temperature and salinity fields in the East Sea reproduced by the global ocean reanalysis data using HYbrid Coordinate Ocean Model (HYCOM for short). Temporal correlation of Sea Surface Temperature (SST) change between HYCOM and the Group for High Resolution Sea Surface Temperature (GHRSST) are higher in summer than winter. Though distributions of temperature and salinity in the HYCOM are similar to those from historical data (World Ocean Atlas 2013 V2), salinity in the HYCOM is lower (highter) in the region where the salinity is high (low). Temperature fields in the Ulleung basin of HYCOM are quite similar to those derived from Pressure-recording Inverted Echo Sounder (PIES), such as the correlation coefficient is higher than 0.7. This indicates that the HYCOM represents well the circulation and meso-scale phenomena in the Ulleung basin.

Distribution and Circulation of Autumn Low-salinity Water in the East Sea (동해의 가을철 저염수 분포 및 유동)

  • Lee, Dong-Kyu;Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Seawater with salinity of 32.5 psu or less is observed in the southern Japan/East Sea (JES) every autumn. It is confined to a surface layer 30-45 m in depth that expands to cover the entire JES in October. Two sources of "autumn low-salinity water" have been identified from historical hydrographic data in the western JES: East China Sea (ECS) water mixed with fresh water discharge from the Yangtze River (Changjiang) and seawater diluted with melted sea ice in the northern JES. Low-salinity water inflow from the ECS begins in June and reaches its peak in September. Low-salinity water from the northern JES expands southward along the coast, and its horizontal distribution varies among years. A rare observational study of the entire JES in October 1969 indicated that water with salinity less than 33.0 psu covered the southwestern JES; the lowest salinity water was found near the Ulleung Basin. In October 1995, the vertical distribution of salinity observed in a meridional section revealed that water with salinity of 33.6 psu or less was present in the area north of the subpolar front.

Detection of low Salinity Water in the Northern East China Sea During Summer using Ocean Color Remote Sensing

  • Suh, Young-Sang;Jang, Lee-Hyun;Lee, Na-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.153-162
    • /
    • 2004
  • In the summer of 1998-2001, a huge flood occurred in the Yangtze River in the eastern China. Low salinity water less than 28 psu from the river was detected around the southwestern part of the Jeju Island, which is located in the southern part of the Korean Peninsula. We studied how to detect low salinity water from the Yangtze River, that cause a terrible damage to the Korean fisheries. We established a relationships between low salinity at surface, turbid water from the Yangtze River and digital ocean color remotely sensed data of SeaWiFS sensor in the northern East China Sea, in the summer of 1998, 1999, 2000 and 2001. The salinity charts of the northern East China Sea were created by regeneration of the satellite ocean color data using the empirical formula from the relationships between in situ low salinity, in situ measured turbid water with transparency and SeaWiFS ocean color data (normalized water leaving radiance of 490 nm/555 nm).

The Inflow Path of the East Sea Intermediate Water into the Ulleung Basin in July 2005

  • Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.153-161
    • /
    • 2006
  • To investigate inflow path of the East Sea Intermediate Water (ESIW) into the Ulleung Basin, hydrographic data surveyed in July 2005 were analyzed. The ESIW was characterized by the Salinity Minimum Layer (SML) within a depth range of 100 to 360 meters. Averaged potential temperature and salinity of the SML were $1.835^{\circ}C$ and 34.049 psu, respectively. Mean potential density $({\sigma}_{\theta})$ of the SML was 27.221 with a standard deviation of 0.0393. On isopycnal surfaces of 27.14 and 27.18 $({\sigma}_{\theta})$ which correspond to upper layers of the ESIW, the coastal low salinity water was separated from the offshore low salinity water by the relatively warm and saline water which might be affected by the Tsushima Warm Current Water. Relatively cold and fresh water, however, intruded into the Ulleung Basin from the region of Korean coast on isopycnal surfaces of 27.22 and 27.26 which was lower layer of the ESIW. The salinity distribution in the isopycnal layer of $27.14{\sim}27.26$ with acceleration potential on 27.22 up surface also showed clearly that the low salinity water flowed from the coastal area and intruded into the Ulleung Basin. This implies that the ESIW flows ken the north to the south along the east coasts of Korea and spreads into the Ulleung Basin in summer.