• Title/Summary/Keyword: Seamless transfer

Search Result 86, Processing Time 0.025 seconds

Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters (간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환)

  • Song, Injong;Choi, Junsoo;Lim, Kyungbae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

Cost-Effective APF/UPS System with Seamless Mode Transfer

  • Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.195-204
    • /
    • 2015
  • In this paper, the development of a cost-effective active power filter/uninterruptible power supply (APF/UPS) system with seamless mode transfer is described. The proposed scheme employs a pulse-width-modulation (PWM) voltage-source inverter and has two operational modes. First, when the source voltage is normal, the system operates as an APF, which compensates for the harmonics and power factor while boosting the DC-link voltage to be ready for the disturbance, without an additional DC charging circuit. A simple algorithm to detect the load current harmonics is also proposed. Second, when the source voltage is out of the normal range (owing to sag, swell, or outage), it operates a UPS, which controls the output voltage constantly by discharging the DC-link capacitor. Furthermore, a seamless transfer method for the single-phase inverter between the APF mode and the UPS mode is also proposed, in which an IGBT switch with diodes is used as a static bypass switch. Dissimilar to a conventional SCR switch, the IGBT switch can implement a seamless mode transfer. During the UPS operation, when the source voltage returns to the normal range, the system operates as an APF. The proposed system has good transient and steady-state response characteristics. The APF, charging circuit, and UPS systems are implemented in one inverter system. Finally, the validity of the proposed scheme is investigated with simulated and experimental results for a prototype APF/UPS system rated at 3 kVA.

Indirect Control of Utility Interactive Inverter for Seamless Transfer (Seamless Transfer를 위한 계통연계형 인버터의 간접전류 제어기법)

  • Yu, Tae-Sik;Choi, Se-Wan;Kim, Hyo-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.329-332
    • /
    • 2005
  • Distributed generation (DG) systems fall in islanding operation when they still in operation even when the main grid is out of electric power Islanding operation is further classified into intentional islanding and unintentional islanding operations. In intentional islanding operation, the DG backs up critical loads while it separates from the main grid on islanding detection. Intentional islanding operation increases utilization of the DG system during the islanding operation. This paper proposes reasonal inverter topology and its control algorithm for seamless transfer of DG systems in intentional islanding operation.

  • PDF

Indirect PR current control based mode transfer technique for Seamless transfer of three phase grid-connected inverter (3상 계통연계형 인버터의 Seamless transfer를 위한 비례공진 제어기를 활용한 간접 전류 제어 기반의 모드 절환 기법)

  • Lim, Kyungbae;Sin, Chanho;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.83-84
    • /
    • 2016
  • 본 논문은 3상 계통 연계형 인버터의 seamless transfer 를 위한 비례공진 제어기를 활용한 간접 전류 제어 기반의 모드 절환 기법에 대해 다루고 있다. 분산 발전 기반의 인버터는 계통 연계 모드와 독립 운전 모드에서 각각 전류원과 전압원으로서 정의된다. 이런 이유로 계통 연계형 인버터는 두 모드 영역에서 고품질의 전력을 공급하기 위한 신뢰할 만한 제어기를 필요로 한다. 따라서 기존에 두 모드 모두에서 사용 가능한 PR 제어 기반의 간접 전류 제어기가 제안되었다. 하지만 추가적으로 분산 발전 기반의 인버터 전원 공급의 신뢰성은 각 모드의 절환시에도 마찬가지로 유지되어야 할 필요성을 가진다. 따라서 본 논문에서는 독립운전에서 계통 연계 모드로 절환 시 필요 되어지는 PLL 모드에서의 PR 제어 기반의 모드 절환 기법에 대하여 제안한다. 최종적으로 인버터의 정상상태뿐만 아니라 과도 상태에서 지역적 부하와 계통 모두에 신뢰할 만한 전력을 공급하기위해 제안된 PR 제어 기반의 모드절환방식은 PSIM 시뮬레이션을 통해 seamless transfer 를 구현할 수 있음이 입증되었다.

  • PDF

A Seamless and Autonomous Mode Transfer Method of Grid-connected Inverter in Microgrid (마이크로그리드에서 계통연계 인버터의 자율적이며 끊김없는 모드전환 기법)

  • Park, Sung-Youl;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.349-355
    • /
    • 2019
  • A grid-connected inverter with critical loads should be able to supply a stable voltage to critical loads at mode change and during clearing time while detecting unintentional islanding. This study proposes a mode transfer method for a grid-connected inverter with critical loads. The proposed method, which integrates the grid-connected and islanded mode control loops into one control block, provides an autonomous and seamless mode transfer from the current control to the voltage control. Therefore, the proposed scheme can supply a stable voltage to critical loads at mode change and during clearing time. Experimental results are provided to validate the proposed method.

Strategy for the Seamless Mode Transfer of an Inverter in a Master-Slave Control Independent Microgrid

  • Wang, Yi;Jiang, Hanhong;Xing, Pengxiang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.251-265
    • /
    • 2018
  • To enable a master-slave control independent microgrid system (MSCIMGS) to supply electricity continuously, the microgrid inverter should perform mode transfer between grid-connected and islanding operations. Transient oscillations should be reduced during transfer to effectively conduct a seamless mode transfer. This study uses a typical MSCIMGS as an example and improves the mode transfer strategy in three aspects: (1) adopts a status-tracking algorithm to improve the switching strategy of the outer loop, (2) uses the voltage magnitude and phase pre-synchronization algorithm to reduce transient shock at the time of grid connection, and (3) applies the hybrid-sensitivity $H_{\infty}$ robust controller instead of the current inner loop to improve the robustness of the controller. Simulations and experiments show that the proposed strategy is more practical than the traditional proportional-derivative control mode transfer and effective in reducing voltage and current oscillations during the transfer period.

Design of 3-phase Indirect Current Controller for Seamless Transfer of Grid-Connected Inverter (계통 연계형 PCS의 Seamless Transfer를 위한 3상 간접전류제어기 설계)

  • Yoon, Sunjae;Kim, Youngwoo;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.66-67
    • /
    • 2010
  • 마이크로그리드 또는 발전용 연료전지 시스템과 같이 계통 이상 시 독립운전으로의 모드전환이 필요한 응용에서 과도현상을 최소화하는 Seamless Transfer 기술이 필수적이다. 모드전환 시 전압제어를 유지함으로서 이러한 과도상태를 최소화할 수 있는 간접전류제어 알고리즘이 제안된 바 있다. 그러나 제어기 모델에 의한 해석이 불가능하므로 제어 파라미터 설정이 어려운 단점이 있었다. 본 논문에서는 인버터의 모델을 고려하여 제어기를 해석함으로서 원하는 제어대역폭과 위상마진을 갖는 제어기의 게인 설정을 가능하게 하였다.

  • PDF

Development of Low-voltage Seamless Transfer Microgrid on Grid-connected Type Islands by Autonomous Operation (자율운전에 의한 계통연계형 도서의 저압 무순단 마이크로그리드 구축)

  • Kim, Jeong Hun;Kwon, Jung-Min;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.169-176
    • /
    • 2017
  • This paper presents research on low-voltage microgrids to maintain a continuous power supply to critical loads on grid-connected islands in Korea. The low-voltage microgrids of this paper focused on that changes public office buildings into uninterrupted microgrids by autonomous operation. For this, a microgrid controller (MGC) and a power conditioning system (PCS) that allow a seamless transfer between grid-connected and grid-isolated operation are proposed. The proposed PCS operates with a silicon controlled rectifier (SCR) switch and employs a simple structure. It supplies power continuously without operators through a coordinated operation between MGC and PCS. In addition, proposed MG has a schedule operation for minimizing electricity charges and provides ancillary services that enable the utilization of resources according to the operation purpose of utility distribution networks. To demonstrate the uninterrupted low-voltage microgrid proposed in this study, a microgrid was implemented and tested in a public office building in Anjwa Island, Jeollanam-do in Korea. A seamless, autonomous operation history, despite system disturbances, was obtained through a long-term demonstration of operation. The results showed that the proposed microgrid technology can be used to achieve energy resilience in grid-connected island areas.

Seamless Transfer Method of MPPT for Two-stage Photovoltaic PCS (태양광 발전 시스템의 무순단 MPPT 운전 모드 절체 기법)

  • Park, Jong-Hwa;Jo, Jongmin;An, Hyunsung;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.233-238
    • /
    • 2018
  • This paper proposes a seamless MPPT operation mode transfer method of photovoltaic system. The photovoltaic system consists of a DC-DC boost converter, a DC-Link, and a 3-level neutral point clamp (NPC) type inverter. The PV voltage fluctuates due to the output characteristics of the solar pane1 depending on the irradiation amount and the temperature. The photovoltaic system requires seamless MPPT mode transfer method that the discontinuity does not occur in order to supply the stable power to system without affecting the fluctuation of the PV voltage. MPPT operation is divided into two modes by the voltage reference. Under the condition that the PV voltage is below 650V, the DC-DC boost converter performs MPPT through duty control based on perturb & observe (P&O) method, and the inverter conducts DC-link voltage and grid current controls in synchronous reference frame. On the other hand, when the PV voltage exceeds above 650V, inverter performs MPPT in accordance with the variation of DC-link voltage control while the converter stops operating. Two MPPT operation modes is smoothly transferred through the proposed method that DC-link voltage or grid current commands are appropriately adjusted from the certain criteria. The feasibility of the MPPT operation mode transfer method is verified using a 10kW solar photovoltaic system, experimental results have good performances that the fluctuation of PV current is reduced to 100%.

Seamless Transfer Operation Between Grid-connected and Stand-Alone Mode in the Three-phase Inverter (3상 인버터의 계통연계 및 독립운전모드 전환 연구)

  • Lee, Wujong;Jo, Hyunsik;Lee, Hak Ju;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • This paper propose seamless transfer operation between grid-connected and stand-alone mode in the three-phase inverter for microgrid. The inverter operates grid-connected mode and stand-alone mode. Grid-connected mode is the inverter connected to grid and stand-alone mode is to deliver energy to the load from inverter at grid fault. When conversion from gird-connected to stand-alone mode, the inverter changes current control to voltage control. When grid restored, the inverter system is conversion from stand-alone to grid-connected mode. In this case, load phase and grid phase are different. Therefore, synchronization is essential. Thus Seamless transfer operation stand-alone to grid-connected mode. In this paper, propose sealmless transfer operation between grid-connceted and stand-alome mode, and this method is verified through simulation and experiment.