• Title/Summary/Keyword: Search and Rescue Unit

Search Result 10, Processing Time 0.043 seconds

Development of Artificial Intelligence Processing Embedded System for Rescue Requester search (소방관의 요구조자 탐색을 위한 인공지능 처리 임베디드 시스템 개발)

  • La, Jong-Pil;Park, Hyun Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1612-1617
    • /
    • 2020
  • Recently, research to reduce the accident rate by actively adopting artificial intelligence technology in the field of disaster safety technology is spreading. In particular, it is important to quickly search the Rescue Requester in order to effectively perform rescue activities at the disaster site. However, it is difficult to search for Rescue Requester due to the nature of the disaster environment. In this paper, We intend to develop an artificial intelligence system that can be operated in a smart helmet for firefighters to search for a rescue requester. To this end, the optimal SoC was selected and developed as an embedded system, and by testing a general-purpose artificial intelligence S/W, the embedded system for future smart helmet research was verified to be suitable as an artificial intelligence S/W operating platform.

A Study on the Optimal Allocation Model of the Korean Maritime SAR Fleet (우리나라 해상 수색ㆍ구조선의 최적배치에 관한 연구)

  • Chang, Woon-Jae;Keum, Jong-Soo;Shin, Cheol-Ho
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.121-127
    • /
    • 2003
  • The Korea Maritime Police Agency(KMPA) is the national maritime Search and Rescuee (SAR) authority with the responsibility to promote an efficient organization of SAR services and to coordinate the conduct of SAR operations within the Korean Search and Rescue Region(SRR). The maritime SAR operations shall provide an adequate and effective search and rescue services to minimize the loss by rendering aid to persons in distress and property in the marine environment. The essence of a successful search and rescue operation is the speed with which it is planned and carried out because survivors who need assistance and whose chances of survival diminish rapidly with time. This paper aims to propose an optimal allocation model of maritime SAR fleet in view of minimizing the search and rescue time. When maritime accidents occur, rescue units have to reach to the distress scene within the specified time. For this, SAR units must be redeployed to an advanced base so that Rescue Units(RU) can reach to the scene of distress in the shortest possible time. The Korean maritime SRR is divided into 180 sub-areas in consideration of an operational and technical ability of SAR units. The suggested model is verified through an empirical application to the Korean maritime SRR. And also the Rescue Vessels(RV) required is estimated for each Rescue Co-ordination Center(RCC).

A Study on the Optimal Allocation Model of the Korean Maritime SAR Fleet (우리나라 해상 수색.구조선의 최적배치에 관한 연구)

  • 장운재;금종수;신철호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.35-41
    • /
    • 2003
  • The Korea Maritime Police Agency(KMPA) is the national maritime Search and Rescue (SAR) authority with the responsibility to promote an efficient organization of SAR services and to coordinate the conduct of SAR operations within the Korean Search and Rescue Region(SRR). The maritime SAR operations shall provide an adequate and effective search and rescue services to minimize the loss of life, injury property damage or loss by rendering aid to persons in distress and property in the marine environment. The essence of a successful search and rescue operation is the speed with which it is planned and carried out because survivors who need assistance and whose chances of survival diminish rapidly with time. This paper aims to propose an optimal allocation model of maritime SAR fleet in view of minimizing the search and rescue time. When maritime accidents occur, rescue units have to reach to the distress scene within the specified time. For this. SAR units must be redeployed to an advanced base so that Rescue Units(RU) can reach to the scene of distress in the shortest possible time. The Korean maritime SRR is divided into 180 sub-areas in consideration of an operational and technical ability of SAR units The suggested model is verified through an empirical application to the Korean maritime SRR. And also the Rescue Vessels(RV) required is estimated for each Rescue Co-ordination Center(RCC).

  • PDF

Allocation Order of SRU using Analytic Network Process (ANP법을 이용한 수색구조선의 우선 배치순위)

  • Jang, Woon-Jae;Cho, Jun-Young;Keum, Jong-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.245-251
    • /
    • 2006
  • This is paper aims to evaluate allocation order of SRU using Analytic Network Process. For evaluation, in this paper, assess about person, ship and environment related risk by fuzzy logic and AHP(Analytic hierarchy Process). Also, quantity and quality operation efficiency assess by DEA (Data Envelopment Analysis) and Liquate scale. finally total weight calculate by ANP. At the result, Rescue Units of MP, YS RCC/RSC is order higher. Thus, it needs to have more rescue ships and rescue devices for relieving the risk in the future.

  • PDF

Design of a Cube-Style Modular Robot (큐빅 형태의 모듈라 로봇 디자인)

  • Oh, Jun-Young;Kim, Dea-Sun;Park, No-Su;Lee, Bo-Hee;Seo, Nam-Gil;Lee, Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.345-346
    • /
    • 2007
  • This paper deals with design of a cube-style modular robot. The modular robot can change its own form according to the working environment. Therefore it is suitable to work in the search and rescue area with the shape of snake, legged robot and humanoid robot. Each of modular unit has to install its own controller on the body and driving mechanism in order to give it mobility autonomously. And also they should attach and detach each other with docking mechanism and algorithm. Using this mechanism, they can make union, separation, recombination. The other important point is that some information of each cell should be exchanged to reconfigure their shape and to make some docking of the modular cell. In this paper we suggested a design concept of our modular robot focused on the docking mechanism of the robot.

  • PDF

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

The Conceptual Design of Auto Releasing Emergency Wreck Marking Buoys (자동이탈식 비상침선표지 개발을 위한 개념설계 연구)

  • Gug, Seung-Gi;Park, Hye-Ri
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.417-422
    • /
    • 2016
  • Aids to Navigation (AtoN) are marine traffic facilities to improve the safety and efficiency of shipping. "New Dangers" should be appropriately marked using lateral, cardinal or isolated danger marks or by using an Emergency Wreck Marking Buoy. However, Emergency Wreck Marking Buoys are difficult to implement in terms of speed and accuracy of installation. In the case of sinking accidents, it is often difficult to immediately install an Emergency Wreck Marking Buoy because of weather conditions, the marine environment or accident positioning. This study concerns Auto-Releasing Emergency Wreck Marking Buoys, which should be installed in all vessel for safe marine navigation and efficient maritime transport with reference to the Maritime Buoyage System (MBS). Auto-Releasing Emergency Wreck Marking Buoys include an auto-release unit, auto reel chain and auto lighting lantern. These buoys can be automatically released from the deck of a vessel and will float in the water for quick installation at the scene of an accident, even in the case of sinking accidents. Auto-Releasing New Mark Buoys are expected to reduce to installation process, prevent secondary accidents by the risk of navigation and be search and rescue rapidly.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.