• Title/Summary/Keyword: Secure Data management

Search Result 741, Processing Time 0.029 seconds

A Study on Trusted Routing Scheme for Secure Path and Secure Data Transmission in MANET (MANET에서 보안 경로와 안전한 데이터 전송을 위한 신뢰 기반 라우팅 기법에 관한 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • Recently, MANET has been used in many fields as the range of applications increases. However, the dynamic topology that MANET has makes it difficult to route and provides the cause of exposure to security vulnerabilities. Therefore, the security features that can be robust to many attacks must have been applied in the routing technique provided in the MANET. In this paper, we propose a secure routing method that secure route is established by reliability evaluation of nodes and secure data communication has applied through key exchange mechanism. The proposed technique used hierarchical structure for efficiency of reliability evaluation of nodes. The reliability of nodes is performed by trust management node and reliability of nodes managed periodically is broadcasted. And the key exchange for secure data transmission is dene without CA as the certificate issuing organization. This allows fast key exchange and the integrity of data transmission improved. The proposed technique improves the security of the data transmission because a secure route to the destination node is established by the reliability evaluation and the data transmission is performed after the key between the source node and the destination node is exchanged through the established route.

A Study on Cloud-Based Secure File Management Security Solutions According yo Information Protection Needs (정보보호 필요에 따른 클라우드 기반의 안전한 파일관리 보안솔루션 연구)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.243-250
    • /
    • 2019
  • In this paper, we develop a Secure File Management Security(: SFMS) based on media in a cloud environment to encrypt and decrypt cloud data on a computer using a Bluetooth - based cryptographic module. The Bluetooth cipher module makes it easy to browse files stored in the cloud, but it is never possible to browse without a module. It is a solution that fundamentally blocks the problems such as hacking and leakage of personal data that have recently become an issue.

Research on SecureOS Module Based on File System for Data Protection (데이터 보호를 위한 파일시스템 기반의 SecureOS Module에 관한 연구)

  • Yonggu JANG;Inchul KIM;Jisong RYU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.67-79
    • /
    • 2023
  • Service environments through laptops, smart devices, and various IoT devices are developing very rapidly. Recent security measures in these Internet environments mainly consist of network application level solutions such as firewall(Intrusion Prevention Systems) and IDS (intrusion detection system). In addition, various security data have recently been used on-site, and issues regarding the management and destruction of such security data have been raised. Products such as DRM(Digital Rights Management) and DLP(Data Loss Prevention) are being used to manage these security data. However despite these security measures, data security measures taken out to be used in the field are operated to the extent that the data is encrypted, delivered, and stored in many environments, and measures for encryption key management or data destruction are insufficient. Based on these issues we aim to propose a SecureOS Module, an OS-based security module. With this module users can manage and operate security data through a consistent interface, addressing the problems mentioned above.

(Design of Group Key Management Protocol for Information Security in Multicast) (멀티캐스트 정보 보호를 위한 그룰 키 관리 프로토콜의 설계)

  • 홍종준
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1235-1244
    • /
    • 2002
  • This paper proposes a group key management protocol for a secure of all the multicast user in PIM-SM multicast group communication. With prosed architect, subgroups for multicast secure group management will be divided by RP (Rendezvous-Point) unit and each RP has a subgroup manager. Each subgroup manager gives a secure key to it's own transmitter md the transmitter compress the data with it's own secure key from the subgroup manager. Before the transmitter send the data to receiver, the transmitter prepare to encrypt a user's service by sending a encryption key to the receiver though the secure channel, after choking the user's validity through the secure channel. As the transmitter sending a data after then, the architecture is designed that the receiver will decode the received data with the transmitter's group key. As a result, the transmitting time is shortened because there is no need to data translation by group key on data sending and the data transmition is possible without new key distribution at path change to SPT (Shortest Path Tree) of the router characteristic. Additionally, the whole architecture size is samller than the other multicast secure architecture by using the conventional PIM-SIM routing structure without any additional equipment.

  • PDF

A Method for Data Access Control and Key Management in Mobile Cloud Storage Services (모바일 클라우드 스토리지 서비스에서의 데이터 보안을 위한 데이터 접근 제어 및 보안 키 관리 기법)

  • Shin, Jaebok;Kim, Yungu;Park, Wooram;Park, Chanik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.303-309
    • /
    • 2013
  • Cloud storage services are used for efficient sharing or synchronizing of user's data across multiple mobile devices. Although cloud storages provide flexibility and scalability in storing data, security issues should be handled. Currently, typical cloud storage services offer data encryption for security purpose but we think such method is not secure enough because managing encryption keys by software and identifying users by simple ID and password are main defectives of current cloud storage services. We propose a secure data access method to cloud storage in mobile environment. Our framework supports hardware-based key management, attestation on the client software integrity, and secure key sharing across the multiple devices. We implemented our prototype using ARM TrustZone and TPM Emulator which is running on secure world of the TrustZone environment.

Design of Multicast Group Key Management Protocol for Information Security in PIM_SM (PIM-SM 정보 보안을 위한 멀티캐스트 그룹 키 관리 프로토콜 설계)

  • 홍종준
    • Journal of Internet Computing and Services
    • /
    • v.3 no.5
    • /
    • pp.87-94
    • /
    • 2002
  • This paper proposes a group key management protocol for a secure of all the multcast user in PIM-SM multicast group communication. Each subgroup manager gives a secure key to it's own transmitter and the transmitter compress the data with it's own secure key from the subgroup manager, Before the transmitter send the data to receiver, the transmitter prepares to encrypt a user's service by sending a encryption key to the receiver though the secure channel. after checking the user's validity through the secure channel, As the transmitter sending a data after then, the architecture is designed that the receiver will decode the received data with the transmitter's group key, Therefore, transmission time is shortened because there is no need to data translation by the group key on data sending and the data transmition is possible without new key distribution at path change to shortest path of the router characteristic.

  • PDF

Design and Implementation of Dynamic Multicast Group Key Management Protocol for Multicast Information Security (멀티캐스트 정보 보안을 위한 동적 그룹 키 관리 프로토콜 설계 및 구현)

  • 홍종준;김태우
    • Convergence Security Journal
    • /
    • v.2 no.2
    • /
    • pp.19-27
    • /
    • 2002
  • This paper proposes a group key management protocol for a secure of all the multicast user in PIM-SM multicast group communication. Each subgroup manager gives a secure key to it's own transmitter and the transmitter compress the data with it's own secure key from the subgroup manager. Before the transmitter send the data to receiver, the transmitter prepares to encrypt a user's service by sending a encryption key to the receiver though the secure channel, after checking the user's validity through the secure channel. As the transmitter sending a data after then, the architecture is designed that the receiver will decode the received data with the transmitter's group key. Therefore, transmission time is shortened because there is no need to data translation by the group key on data sending and the data transmition is possible without new key distribution at path change to shortest path of the router characteristic.

  • PDF

Design and Implementation of Dynamic Group Key Management Protocol for Multicast Information Security (전자상거래를 위한 멀티캐스트 그를 키 관리 프로토콜 설계 및 구현)

  • 홍종준;김태우
    • Convergence Security Journal
    • /
    • v.2 no.1
    • /
    • pp.99-107
    • /
    • 2002
  • This paper proposes a group key management protocol for a secure of all the multicast user in PIM-SM multicast group communication under electronic commerce. Each subgroup manager gives a secure key to it's own transmitter and the transmitter compress the data with it's own secure key from the subgroup manager. Before the transmitter send the data to receiver, the transmitter prepares to encrypt a user's service by sending a encryption key to the receiver though the secure channel, after checking the user's validity through the secure channel. As the transmitter sending a data after then, the architecture is designed that the receiver will decode the received data with the transmitter's group key. Therefore, transmission time is shortened because there is no need to data translation by the group key on data sending and the data transmition is possible without new key distribution at path change to shortest path of the router characteristic.

  • PDF

A Secure Medical Information Management System for Wireless Body Area Networks

  • Liu, Xiyao;Zhu, Yuesheng;Ge, Yu;Wu, Dajun;Zou, Beiji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.221-237
    • /
    • 2016
  • The wireless body area networks (WBANs) consist of wearable computing devices and can support various healthcare-related applications. There exist two crucial issues when WBANs are utilized for healthcare applications. One is the protection of the sensitive biometric data transmitted over the insecure wireless channels. The other is the design of effective medical management mechanisms. In this paper, a secure medical information management system is proposed and implemented on a TinyOS-based WBAN test bed to simultaneously address these two issues. In this system, the electronic medical record (EMR) is bound to the biometric data with a novel fragile zero-watermarking scheme based on the modified visual secret sharing (MVSS). In this manner, the EMR can be utilized not only for medical management but also for data integrity checking. Additionally, both the biometric data and the EMR are encrypted, and the EMR is further protected by the MVSS. Our analysis and experimental results demonstrate that the proposed system not only protects the confidentialities of both the biometric data and the EMR but also offers reliable patient information authentication, explicit healthcare operation verification and undeniable doctor liability identification for WBANs.

Design of Secure Information Center Using a Conventional Cryptography

  • Choi, Jun-Hyuk;Kim Tae-Gap;Go, Byung-Do;Ryou, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.4
    • /
    • pp.53-66
    • /
    • 1996
  • World Wide Web is a total solution for multi-media data transmission on Internet. Because of its characteristics like ease of use, support for multi-media data and smart graphic user interface, WWW has extended to cover all kinds of applications. The Secure Information Center(SIC) is a data transmission system using conventional cryptography between client and server on WWW. It's main function is to support the encryption of sending data. For encryption of data IDEA(International Data Encryption Algorithm) is used and for authentication mechanism MD5 hash function is used. Since Secure Information Center is used by many users, conventional cryptosystem is efficient in managing their secure interactions. However, there are some restrictions on sharing of same key and data transmission between client and server, for example the risk of key exposure and the difficulty of key sharing mechanisms. To solve these problems, the Secure Information Center provides encryption mechanisms and key management policies.