• Title/Summary/Keyword: Security Devices

Search Result 1,587, Processing Time 0.022 seconds

Analysis of Security Vulnerabilities for IoT Devices

  • Kim, Hee-Hyun;Yoo, Jinho
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • Recently, the number of Internet of Things (IoT) devices has been increasing exponentially. These IoT devices are directly connected to the internet to exchange information. IoT devices are becoming smaller and lighter. However, security measures are not taken in a timely manner compared to the security vulnerabilities of IoT devices. This is often the case when the security patches cannot be applied to the device because the security patches are not adequately applied or there is no patch function. Thus, security vulnerabilities continue to exist, and security incidents continue to increase. In this study, we classified and analyzed the most common security vulnerabilities for IoT devices and identify the essential vulnerabilities of IoT devices that should be considered for security when producing IoT devices. This paper will contribute to reducing the occurrence of security vulnerabilities in companies that produce IoT devices. Additionally, companies can identify vulnerabilities that frequently occur in IoT devices and take preemptive measures.

System Hardening and Security Monitoring for IoT Devices to Mitigate IoT Security Vulnerabilities and Threats

  • Choi, Seul-Ki;Yang, Chung-Huang;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.906-918
    • /
    • 2018
  • The advent of the Internet of Things (IoT) technology, which brings many benefits to our lives, has resulted in numerous IoT devices in many parts of our living environment. However, to adapt to the rapid changes in the IoT market, numerous IoT devices were widely deployed without implementing security by design at the time of development. As a result, malicious attackers have targeted IoT devices, and IoT devices lacking security features have been compromised by attackers, resulting in many security incidents. In particular, an attacker can take control of an IoT device, such as Mirai Botnet, that has insufficient security features. The IoT device can be used to paralyze numerous websites by performing a DDoS attack against a DNS service provider. Therefore, this study proposes a scheme to minimize security vulnerabilities and threats in IoT devices to improve the security of the IoT service environment.

Mobile Devices Technologies: Risks and Security

  • Alsaqour, Raed;Alharthi, Sultan;Aldehaimi, Khalid;Abdelhaq, Maha
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.249-254
    • /
    • 2021
  • Our society is depending on mobile devices that play a major role in our lives. Utilizing these devices is possible due to their speed power and efficiency in performing basic as well as sophisticated operations that can be found in traditional computers like desktop workstations. The challenge with using mobile devices is that organizations are concerned with the interference between personal and corporate use due to Bring Your Own Device (BYOD) trend. This paper highlights the importance of mobile devices in our daily tasks and the associated risks involved with using these devices. Several technologies and countermeasures are reviewed in this paper to secure the mobile devices from different attempts of attacks. It is important to mention that this paper focuses on technical measures rather than considering different aspects of security measures as recommended by the cybersecurity community.

A Design of Access Control Method for Security Enhance based Smart Device (스마트 디바이스 기반의 보안성 강화를 위한 접근제어 기법 설계)

  • Park, Jungoh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.11-20
    • /
    • 2018
  • Smart devices refer to various devices and control equipment such as health care devices, imaging devices, motor devices and wearable devices that use wireless network communication (e.g., Wi-fi, Bluetooth, LTE). Commercial services using such devices are found in a wide range of fields, including home networks, health care and medical services, entertainment and toys. Studies on smart devices have also been actively undertaken by academia and industry alike, as the penetration rate of smartphones grew and the technological progress made with the fourth industrial revolution bring about great convenience for users. While services offered through smart devices come with convenience, there is also various security threats that can lead to financial loss or even a loss of life in the case of terrorist attacks. As attacks that are committed through smart devices tend to pick up where attacks based on wireless internet left off, more research is needed on related security topics. As such, this paper seeks to design an access control method for reinforced security for smart devices. After registering and authenticating the smart device from the user's smart phone and service provider, a safe communication protocol is designed. Then to secure the integrity and confidentiality of the communication data, a management process such as for device renewal or cancellation is designed. Safety and security of the existing systems against attacks are also evaluated. In doing so, an improved efficiency by approximately 44% compared to the encryption processing speed of the existing system was verified.

A Study on IoT Devices Vulnerability and Security (IoT 디바이스 보안위협 및 대응방안 연구)

  • Yoo, Seung Jae
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Numerous IoT devices are connected to a wireless network environment to collect and transmit data without time and space limitations, but many security vulnerabilities are exposed in these process. But IoT security is not easy to create feasible security standards and device authentication due to differences in the approach or implementation of devices and networks. However, it is clear that the improvement and application of the standard framework for enhancing the security level of the device is the starting point to help the most successful security effect. In this study, we investigate the confidentiality, integrity, availability, and access control implementation plans for IoT devices (which are the basic goals of information security), and standardized security evaluation criteria for IoT devices, and study ways to improve them.

Service Identification of Internet-Connected Devices Based on Common Platform Enumeration

  • Na, Sarang;Kim, Taeeun;Kim, Hwankuk
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.740-750
    • /
    • 2018
  • There are a great number of Internet-connected devices and their information can be acquired through an Internet-wide scanning tool. By associating device information with publicly known security vulnerabilities, security experts are able to determine whether a particular device is vulnerable. Currently, the identification of the device information and its related vulnerabilities is manually carried out. It is necessary to automate the process to identify a huge number of Internet-connected devices in order to analyze more than one hundred thousand security vulnerabilities. In this paper, we propose a method of automatically generating device information in the Common Platform Enumeration (CPE) format from banner text to discover potentially weak devices having the Common Vulnerabilities Exposures (CVE) vulnerability. We demonstrated that our proposed method can distinguish as much adequate CPE information as possible in the service banner.

IP camera security: "Security Eyes"

  • Alshamrani, Sultan S
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.75-80
    • /
    • 2022
  • With the rapid growth of Internet of Things (IoT) applications and devices, there are still defects in safety and privacy. Current researches indicate that there are weak security mechanisms to protect these devices. Humans use the Internet of Things to control and connect their devices with the Internet. Using the Internet of things has been increased over time. Therefore, capture of sensitive user data has increased intentionally or not [1]. The IP Camera is a type of (IOT) devices. Therefore, in this paper we aim to create a "Security Eyes" application that protects IP Cameras from security attacks according to certain security mechanisms (increasing the strength of encryption and filling the usual security holes in IP cameras … etc) and alerts the user when the live broadcast is interrupted or an error occurs.

Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

  • Kim, Sung-Hyun;Lee, Hee-Jo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.671-690
    • /
    • 2010
  • The continuous growth of attacks in the Internet causes to generate a number of rules in security devices such as Intrusion Prevention Systems, firewalls, etc. Policy anomalies in security devices create security holes and prevent the system from determining quickly whether allow or deny a packet. Policy anomalies exist among the rules in multiple security devices as well as in a single security device. The solution for policy anomalies requires complex and complicated algorithms. In this paper, we propose a new method to remove policy anomalies in a single security device and avoid policy anomalies among the rules in distributed security devices. The proposed method classifies rules according to traffic direction and checks policy anomalies in each device. It is unnecessary to compare the rules for outgoing traffic with the rules for incoming traffic. Therefore, classifying rules by in-out traffic, the proposed method can reduce the number of rules to be compared up to a half. Instead of detecting policy anomalies in distributed security devices, one adopts the rules from others for avoiding anomaly. After removing policy anomalies in each device, other firewalls can keep the policy consistency without anomalies by adopting the rules of a trusted firewall. In addition, it blocks unnecessary traffic because a source side sends as much traffic as the destination side accepts. Also we explain another policy anomaly which can be found under a connection-oriented communication protocol.

The Security Systems in the Wireless Home Networks

  • Kim Su-Jin;Bae Myung-Soo;Cho Sae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.6
    • /
    • pp.735-741
    • /
    • 2006
  • In the near future, the wireless home networks will connect several devices at home. Due to the broadcast nature of a wireless network, anyone can hear and capture communication. Thus, we need to protect our network from attacks outside the house. In this paper, we propose and implement a security system that provides different levels of the security services to heterogenous home devices. To reduce the communication cost and workload of the server, home devices send the encrypted messages directly instead of sending through the sever. We implement our security system on laptops using JAVA and our security system achieves the better performance with the large number of devices and messages in a network. In order to prove that our security system is secure against various attacks, we analyze the security of our security system using attack trees.

  • PDF

A Study on the Security Threats of IoT Devices Exposed in Search Engine (검색엔진에 노출된 IoT 장치의 보안 위협에 대한 연구)

  • Han, Kyong-Ho;Lee, Seong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.128-134
    • /
    • 2016
  • IoT devices including smart devices are connected with internet, thus they have security threats everytime. Particularly, IoT devices are composed of low performance MCU and small-capacity memory because they are miniaturized, so they are likely to be exposed to various security threats like DoS attacks. In addition, in case of IoT devices installed for a remote place, it's not easy for users to control continuously them and to install immediately security patch for them. For most of IoT devices connected directly with internet under user's intention, devices exposed to outside by setting IoT gateway, and devices exposed to outside by the DMZ function or Port Forwarding function of router, specific protocol for IoT services was used and the devices show a response when services about related protocol are required from outside. From internet search engine for IoT devices, IP addresses are inspected on the basis of protocol mainly used for IoT devices and then IP addresses showing a response are maintained as database, so that users can utilize related information. Specially, IoT devices using HTTP and HTTPS protocol, which are used at usual web server, are easily searched at usual search engines like Google as well as search engine for the sole IoT devices. Ill-intentioned attackers get the IP addresses of vulnerable devices from search engine and try to attack the devices. The purpose of this study is to find the problems arisen when HTTP, HTTPS, CoAP, SOAP, and RestFUL protocols used for IoT devices are detected by search engine and are maintained as database, and to seek the solution for the problems. In particular, when the user ID and password of IoT devices set by manufacturing factory are still same or the already known vulnerabilities of IoT devices are not patched, the dangerousness of the IoT devices and its related solution were found in this study.