• Title/Summary/Keyword: Security in WSNs

Search Result 60, Processing Time 0.026 seconds

A Survey Study on Standard Security Models in Wireless Sensor Networks

  • Lee, Sang Ho
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.4
    • /
    • pp.31-36
    • /
    • 2014
  • Recent advancement in Wireless Sensor Networks (WSNs) has paved the way for WSNs to enable in various environments in monitoring temperature, motion, sound, and vibration. These applications often include the detection of sensitive information from enemy movements in hostile areas or in locations of personnel in buildings. Due to characteristics of WSNs and dealing with sensitive information, wireless sensor nodes tend to be exposed to the enemy or in a hazard area, and security is a major concern in WSNs. Because WSNs pose unique challenges, traditional security techniques used in conventional networks cannot be applied directly, many researchers have developed various security protocols to fit into WSNs. To develop countermeasures of various attacks in WSNs, descriptions and analysis of current security attacks in the network layers must be developed by using a standard notation. However, there is no research paper describing and analyzing security models in WSNs by using a standard notation such as The Unified Modeling Language (UML). Using the UML helps security developers to understand security attacks and design secure WSNs. In this research, we provide standard models for security attacks by UML Sequence Diagrams to describe and analyze possible attacks in the three network layers.

  • PDF

A Strong Authentication Scheme with User Privacy for Wireless Sensor Networks

  • Kumar, Pardeep;Gurtov, Andrei;Ylianttila, Mika;Lee, Sang-Gon;Lee, HoonJae
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.889-899
    • /
    • 2013
  • Wireless sensor networks (WSNs) are used for many real-time applications. User authentication is an important security service for WSNs to ensure only legitimate users can access the sensor data within the network. In 2012, Yoo and others proposed a security-performance-balanced user authentication scheme for WSNs, which is an enhancement of existing schemes. In this paper, we show that Yoo and others' scheme has security flaws, and it is not efficient for real WSNs. In addition, this paper proposes a new strong authentication scheme with user privacy for WSNs. The proposed scheme not only achieves end-party mutual authentication (that is, between the user and the sensor node) but also establishes a dynamic session key. The proposed scheme preserves the security features of Yoo and others' scheme and other existing schemes and provides more practical security services. Additionally, the efficiency of the proposed scheme is more appropriate for real-world WSNs applications.

The Wormhole Routing Attack in Wireless Sensor Networks (WSN)

  • Sharif, Lukman;Ahmed, Munir
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • Secure routing is vital to the acceptance and use of Wireless Sensor Networks (WSN) for many applications. However, providing secure routing in WSNs is a challenging task due to the inherently constrained capabilities of sensor nodes. Although a wide variety of routing protocols have been proposed for WSNs, most do not take security into account as a main goal. Routing attacks can have devastating effects on WSNs and present a major challenge when designing robust security mechanisms for WSNs. In this paper, we examine some of the most common routing attacks in WSNs. In particular, we focus on the wormhole routing attack in some detail. A variety of countermeasures have been proposed in the literature for such attacks. However, most of these countermeasures suffer from flaws that essentially render them ineffective for use in large scale WSN deployments. Due to the inherent constraints found in WSNs, there is a need for lightweight and robust security mechanisms. The examination of the wormhole routing attack and some of the proposed countermeasures makes it evident that it is extremely difficult to retrofit existing protocols with defenses against routing attacks. It is suggested that one of the ways to approach this rich field of research problems in WSNs could be to carefully design new routing protocols in which attacks such as wormholes can be rendered meaningless.

Survey on Security in Wireless Sensor

  • Li, Zhijun;Gong, Guang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6B
    • /
    • pp.233-248
    • /
    • 2008
  • Advances in electronics and wireless communication technologies have enabled the development of large-scale wireless sensor networks (WSNs). There are numerous applications for wireless sensor networks, and security is vital for many of them. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose unique security challenges and make innovative approaches desirable. In this paper, we present a survey on security issues in wireless sensor networks. We address several network models for security protocols in WSNs, and explore the state of the art in research on the key distribution and management schemes, typical attacks and corresponding countermeasures, entity and message authentication protocols, security data aggregation, and privacy. In addition, we discuss some directions of future work.

Interference-free Clustering Protocol for Large-Scale and Dense Wireless Sensor Networks

  • Chen, Zhihong;Lin, Hai;Wang, Lusheng;Zhao, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1238-1259
    • /
    • 2019
  • Saving energy is a big challenge for Wireless Sensor Networks (WSNs), which becomes even more critical in large-scale WSNs. Most energy waste is communication related, such as collision, overhearing and idle listening, so the schedule-based access which can avoid these wastes is preferred for WSNs. On the other hand, clustering technique is considered as the most promising solution for topology management in WSNs. Hence, providing interference-free clustering is vital for WSNs, especially for large-scale WSNs. However, schedule management in cluster-based networks is never a trivial work, since it requires inter-cluster cooperation. In this paper, we propose a clustering method, called Interference-Free Clustering Protocol (IFCP), to partition a WSN into interference-free clusters, making timeslot management much easier to achieve. Moreover, we model the clustering problem as a multi-objective optimization issue and use non-dominated sorting genetic algorithm II to solve it. Our proposal is finally compared with two adaptive clustering methods, HEED-CSMA and HEED-BMA, demonstrating that it achieves the good performance in terms of delay, packet delivery ratio, and energy consumption.

Dynamic Session Key based Pairwise Key Management Scheme for Wireless Sensor Networks

  • Premamayudu, B;Rao, Koduganti Venkata;Varma, P. Suresh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5596-5615
    • /
    • 2016
  • Security is one of the major challenges in the Wireless Sensor Networks (WSNs). WSNs are more vulnerable to adversarial activities. All cryptographic security services indirectly depend on key management. Symmetric key management is the best key establishment process for WSNs due to the resource constraints of the sensors. In this paper, we proposed dynamic session key establishment scheme based on randomly generated nonce value and sensor node identity, in which each sensor node is equipped with session key on expire basis. The proposed scheme is compare with five popular existing key management systems. Our scheme is simulated in OMNET++ with MixiM and presented experimental results. The analytical study and experimental results show the superiority of the proposed scheme over the existing schemes in terms of energy, storage, resilience and communication overhead.

An Efficient Clustering algorithm for Target Tracking in WSNs (무선 센서 네트워크에서 클러스터링을 이용한 효율적인 측위)

  • Rhee, Chung-Sei;Kim, Jang-Hwan
    • Convergence Security Journal
    • /
    • v.16 no.5
    • /
    • pp.65-71
    • /
    • 2016
  • The use of Wireless Sensor Networks in many applications require not only efficient network design but also broad aspects of security, military and health care for hospital. Among many applications of WSNs, target tracking is an essential research area in WSNs. We need to track a target quickly as well as find the lost target in WSNs. In this paper, we propose an efficient target tracking method. We also propose an efficient clustering method and algorithm for target tracking.

A Robust Mutual Authentication Protocol for Wireless Sensor Networks

  • Chen, Tien-Ho;Shih, Wei-Kuan
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.704-712
    • /
    • 2010
  • Authentication is an important service in wireless sensor networks (WSNs) for an unattended environment. Recently, Das proposed a hash-based authentication protocol for WSNs, which provides more security against the masquerade, stolen-verifier, replay, and guessing attacks and avoids the threat which comes with having many logged-in users with the same login-id. In this paper, we point out one security weakness of Das' protocol in mutual authentication for WSN's preservation between users, gateway-node, and sensor nodes. To remedy the problem, this paper provides a secrecy improvement over Das' protocol to ensure that a legal user can exercise a WSN in an insecure environment. Furthermore, by presenting the comparisons of security, computation and communication costs, and performances with the related protocols, the proposed protocol is shown to be suitable for higher security WSNs.

Unified Modeling Language based Analysis of Security Attacks in Wireless Sensor Networks: A Survey

  • Hong, Sung-Hyuck;Lim, Sun-Ho;Song, Jae-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.805-821
    • /
    • 2011
  • Wireless Sensor Networks (WSNs) are rapidly emerging because of their potential applications available in military and civilian environments. Due to unattended and hostile deployment environments, shared wireless links, and inherent resource constraints, providing high level security services is challenging in WSNs. In this paper, we revisit various security attack models and analyze them by using a well-known standard notation, Unified Modeling Language (UML). We provide a set of UML collaboration diagram and sequence diagrams of attack models witnessed in different network layers: physical, data/link, network, and transport. The proposed UML-based analysis not only can facilitate understanding of attack strategies, but can also provide a deep insight into designing/developing countermeasures in WSNs.

TriSec: A Secure Data Framework for Wireless Sensor Networks Using Authenticated Encryption

  • Kumar, Pardeep;Cho, Sang-Il;Lee, Dea-Seok;Lee, Young-Dong;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Wireless sensor networks (WSNs) are an emerging technology and offers economically viable monitoring solution to many challenging applications. However, deploying new technology in hostile environment, without considering security in mind has often proved to be unreasonably unsecured. Apparently, security techniques face many critical challenges in WSNs like data security and secrecy due to its hostile deployment nature. In order to resolve security in WSNs, we propose a novel and efficient secure framework called TriSec: a secure data framework for wireless sensor networks to attain high level of security. TriSec provides data confidentiality, authentication and data integrity to sensor networks. TriSec supports node-to-node encryption using PingPong-128 stream cipher based-privacy. A new PingPong-MAC (PP-MAC) is incorporated with PingPong stream cipher to make TriSec framework more secure. PingPong-128 is fast keystream generation and it is very suitable for sensor network environment. We have implemented the proposed scheme on wireless sensor platform and our result shows their feasibility.