• Title/Summary/Keyword: Sediment Treatment

Search Result 231, Processing Time 0.033 seconds

Changes in the Ecological Toxic Effects of the Contaminated Sediment of Singapore after Treatment (싱가포르 오염준설토 정화 후 생태 독성 변화)

  • Jho, Eun Hea;Yun, Seong Ho;Hwang, Sun Kyung;Lee, Sung Jong;Kim, Hongseok;Chae, Heehun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.82-88
    • /
    • 2017
  • Contaminated sediment can be treated in order to reuse the treated sediment. Even though the chemical criteria are satisfied, the treated sediment could still impose toxic effects. Therefore, this study investigated the changes in the ecological toxic effects of the contaminated sediment from the J region in Singapore after treatment. The contaminated sediment was subject to sequential soil washing and thermal treatment, followed by pH neutralization. Toxic effects of the contaminated and treated sediments were determined by using Vibrio fischeri ($Microtox^{(R)}$), Triticum aestivum (wheat), and Eisenia foetida (earthworm). After treatment, the concentrations of total petroleum hydrocarbons and heavy metals were decreased by 98% and 59-93%, respectively, and satisfied the Industrial Maximum Values of the Dutch Standard, which were used as the remedial goal. The bioluminescence reduction of V. fischeri decreased significantly, and the earthworm survival increased from 0% to 90% after treatment. The germination rate increased from $0{\pm}0%$ to $75{\pm}13%$ after treatment, but the treated sediment may need additional treatment such as nutrient addition for better plant growth. Overall, this study showed that the treatment of the contaminated sediment satisfactorily removed mixed contaminants, and this led to reduction in toxic effects, suggesting improved potentials for reuse of the treated sediment.

Activated Carbon Performance for the Treatment of Diesel-Derived Polycyclic Aromatic Hydrocarbons

  • Choi, Yongju;Luthy, Richard G.
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • This study assessed the performance of activated carbon (AC) amendment to treat polycyclic aromatic hydrocarbons (PAHs) including both parent- and alkylated-moieties in sediment impacted by diesel. A field-collected, diesel-impacted sediment with a NAPL content of 1% was used for the study. No. 2 diesel fuel is weathered by heating at $70^{\circ}C$ for 4 days to obtain a weathered diesel sample having C3-naphthalenes to C2-phenanthrenes/anthracenes (N2/P3) ratio similar to the original sediment. The sediment samples spiked with the weathered diesel to obtain non-aqueous phase liquid (NAPL) contents of 1, 5 and 10% were contacted with AC with a dose of 5% as sediment dry weight for 1 month. By the AC-sediment contact, the freely-dissolved equilibrium concentrations were substantially reduced. Even for sediment with 10% NAPL content, the reductions in the freely-dissolved concentrations were 92% and 75% for total parent-and alkylated-PAHs, respectively. The effect of NAPL contents on the performance of AC was negligible for parent-PAHs, while for alkylated-PAHs, a slightly reduced AC performance was observed. The results suggest that the AC amendment can be an effective option for the treatment of petroleum-impacted sediment with relatively high NAPL contents.

Influence of Sterilization Methods on Atrazine Assimilation (멸균법이 atrazine의 분해과정에 미치는 영향)

  • 정규혁;오승민
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • We investigated the influence of various known sterilization methods on atrazine assimilation. The present study was designed to investigate the effect of autoclaving, sodium azide and mercuric chloride treatment on the assimilation of atrazine in soil and sediment. The sterilization reactor treated with sodium azide resulted in $^{14}CO_2$ generation and atrazine was rapidly disappeared from reactor through chemical reaction with sodium azide. These findings seem to indicate that sodium azide sterilization is not recommended for atrazine studies. In sample reactors autoclaved or treated with mercuric chloride, $^{14}CO_2$ generation was not detected and most of the disappeared atrazine was found to exist as hydroxyatrazine. These results suggested that autoclaving or mercuric chloride treatment could be effective sterilization methods. However, chemical properties(pH and redox potential) of soil and sediment were altered by any of the sterilization methods applied. So it was suspected that these altered properties could affect distribution and mineralization of atrazine in soil and sediment. In addition, both autoclaving and mercuric chloride treatment have altered $K_d$ values of hydroxyatrazine more significantly than those of atrazine. Consequently, although autoclaving and mercuric chloride treatment are effective sterilization methods, one must be careful in using them in practice as these methods may cause chemical degradation of both of atrazine and its metabolites and changes in chemical properties of soil and sediment. In conclusion, careful assessment of sterilization methods must be made for the degradation studies of chemicals in soil and sediment in order to minimize possible undesirable chemical degradation of sample and/or changes in physico-chemical properties of soil and sediment by the selected sterilization methods.

  • PDF

Management and Remediation Technologies of Contaminated Sediment (오염퇴적물 관리방향 및 처리공법)

  • Kim, Geon-Ha;Jeong, Woo-Hyeok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • As Total Maximum Daily Load program is being implemented, needs for the management and treatment of contaminated sediment are rising to attain cleaner water resources. In this paper, impacts and management methods of contaminated sediment were reviewed. Remediation technologies for contaminated sediment including dredging, natural attenuation, in situ solidification/stabilization, in situ biological remediation, in situ chemical remediation and capping were reviewed. Integrated remediation scheme was presented as well.

호소 및 하천의 오염 저질토 sampling 방법 및 처리방안 연구

  • 최동호;배우근;최형주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.115-119
    • /
    • 2003
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water body can accumulate in sediment at much higher levels, the purpose of this study was to make convenient sampling method and optimal treatment of sediment for water quality improvement in reservoir or stream based on an evaluation of degree of contamination. Results for analysis of S-reservoir sediments were observed that copper concentration of almost areas were higher than the regulation of soil pollution (50 mg/1) for the riverbed. S-stream sediments were observed that copper, arsenic and TPH concentration of almost areas were exceeded soil pollution concerning levels for factorial areas. We used Remscreen(version. 1.0) program which is contaminated soil recovery program to select optimal treatment method of contaminant sediments. The result was shown in the order of Thermal Calcination > Excavation, Retrieval and Off-site Disposal(comparative less then contaminant) > Low Temperature Thermal Desorption + Solidification/Stabilization.

  • PDF

Effects of Drying and Heating on the Chemical Species of Heavy Metals in Lake Chungcho Sediments (건조 ${\cdot}$ 가열처리가 청초호 퇴적물 중 중금속의 화학적 존재형태에 미치는 영향)

  • Park, Gil-Ok;Kim, Hee-Joung;An, Hae-Jung;Kim, Shin-Hee;Jun, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.334-340
    • /
    • 2005
  • The chemical forms of Cd, Cu, Pb, and Zn were analysed by sequential extraction technique to evaluate the effects of drying and heating of dredged sediments from Lake Chungcho. The most abundant fraction of Cd, Cu, and Zn in the wet and untreated sediment was organic/sulfidic fraction that is state in reducing environment such as the bottom condition of Lake Chungcho, while Pb dominated in residual fraction. This means that the source of Cd, Cu, and Zn in the Chungcho lake sediment is related to the organic degradation and Pb to the erosion from surrounding rocks. With drying and oxidation by dredging, heating treatment, and disposal of the lake sediment, the chemical forms of studied metals changed greatly from organic/sulfidic fraction to adsorbed and reducible fractions which are more labile in oxygenated environment. Organic/sulfidic fraction of Cd, Cu and Pb in the wet sediment was transformed with drying and heating treatments to the labile ones like adsorbed and reducible fraction, but Zn to carbonate and reducible fraction. Heating of the sediment at $320^{\circ}C$ greatly increased the labile fraction of Cd and Cu, while that at $105^{\circ}C$ for Pb and Zn. It is believed that the increase in labile forms of heavy metals in the sediments by drying and heating is caused by the contact with oxygen during drying and heating and by the increase of pH of the pore water at the expense of organic/sulfidic fraction. It is concluded that the drying and oxidation currently used in the treatment of dredged sediment can increase labile forms of heavy metals in the sediment, and the potential of the metal availability from the sediment.

The Sediment Transport Pattern from a Large Industrial Complex to an Enclosed Bay

  • Kwon, Young-Tack;Lee, Chan-Won
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2008
  • The movement of sediments in the stream crossing a large industrial complex to the mouth of Masan Bay was monitored for eight years. Sediment samples were seasonally collected in the period of $1992{\sim}1997$ and $2001{\sim}2002$. The heavy metal content of sediment was found to be higher at dry season with the peak on February and significantly decreased at rainy season. Metals content in stream sediments were rapidly decreased by large precipitation events in rainy season because the contaminants in the upstream sediments were transported to the dredged area of Masan Bay where is a typical enclosed bay in Korea. The increasing and decreasing tendency of heavy metals in sediment was repeatedly observed for six consecutive years. The heavy metals assessment of stream sediment provide us the information about the pollutant source, transport pattern and control strategy along the industrial complex. It was strongly suggested that the transportable stream sediments of an industrial area should be controlled as one of the important strategies to restore and manage the enclosed bay. Combined wastewaters have been collected and treated in a publicly owned treatment works (POTW) after industrial wastewater treatment at each location of industries since 1994. A field study was conducted to investigate the pollutant removal efficiency and performance of contact oxidation system installed and operated in two locations in the stream. The stream sediment quality was improved since then, and as a consequence the habitat of the estuary has been restored.

In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles (활성탄 주입을 통한 퇴적물 내 소수성 유기오염물질 원위치 안정화 기술: 작동 원리)

  • LEE, Hyeonmin;JUNG, Jihyeun;CHOI, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • In-situ activated carbon (AC) amendment is a promising remediation technique for the treatment of sediment impacted by hydrophobic organic contaminants (HOCs). Since its first proposal in the early 2000s, the remediation technique has quickly gained acceptance as a feasible alternative among the scientific and engineering communities in the United States and northern Europe. This review paper aims to provide an overview on in-situ AC amendment for the treatment of HOC-impacted sediment with a major focus on its working principles. We began with an introduction on the practical and scientific background that led to the proposal of this remediation technique. Then, we described how the remediation technique works in a mechanistic sense, along with discussion on two modes of implementation, mechanical mixing and thin-layer capping, that are distinct from each other. We also discussed key considerations involved in establishing a remedial goal and performing post-implementation monitoring when this technique is field-applied. We concluded with future works necessary to adopt and further develop this innovative sediment remediation technique to ongoing and future sediment contamination concerns in Korea.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

Environmental Change and Its Enhancement of a Bay Sediment by Using Useful Microbial and Chemical Treatments (연안저질 환경 개선을 위한 유용 미생물제제 및 산화제의 사용에 따른 환경변화 및 효율성 관찰)

  • Cho, Dae-Chul;Bae, Hwan-Jin;Lee, Jung-Yeol;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1355-1362
    • /
    • 2010
  • This study was carried out in order to observe how the bay sediment would be changed with microbial treatments and a chemical oxidant like $CaO_2$. The sediment during the treatments was analyzed in terms of pH, ORP, volatile organics content, COD, AVS, T-N, and T-P. With $CaO_2$ treatment, pH was kept over 9.66 and ORP ranged from +4.70~+46.0, which meant an aerobic state meanwhile with the microbial treatment those were worse. In addition the chemical treatment showed better environmental index values than the microbial one: volatile organics content and COD values in the former were 12.9% and 37.9% while those in the latter were 4.5% and 18.7%, respectively. AVS and T-P were 71.1% and 100% versus 56.5% and 85.8%, respectively. However, the microbial treatment was better for T-N(66% higher). On the other hand, both treatment at a time enhanced all the environmental indices but COD meantime pH and ORP values were lower than with the chemical treatment only. Thus additional input of an oxygen generator like $CaO_2$ could improve the environmental state of a bay sediment where the biological treatment is going on.