• Title/Summary/Keyword: Sediment loss

Search Result 294, Processing Time 0.026 seconds

Study on Sediment Runoff Reduction using Vegetative Filter Strips in a Mountainous Watershed (초생대를 이용한 산지유역 토사유출 저감에 관한 연구)

  • Son, Kwangik;Kim, Hyungjoon;Lim, Kyoung Jae;Jung, Younghun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.407-417
    • /
    • 2015
  • Soil loss is one of the significant disasters which have threatened human community and ecosystem. Particularly, Korea has high vulnerability of soil loss because rainfall is concentrated during summer and mountainous regions take more than 70% of total land resources. Accordingly, the sediment control management plan are required to prevent the loss of soil resources and to improve water quality in the receiving waterbodies. In this regard, the objectives of this study are 1) to quantify the effect of the Vegetative Filter Strip (VFS) on sediment runoff reduction and 2) to analyze the relationship of rainfall intensity and sediment runoff. For this, SATEEC and VFSMOD were used to estimate sediment runoff according to rainfall intensity and to quantify the effect of VFS on sediment runoff reduction, respectively. In this study, the VFS has higher impact on sediment reduction for lower maximum rainfall intensity, which means that the maximum rainfall intensity is one of significant factors to control sediment runoff. Also, the sediment with VFS considered was highly correlated with maximum rainfall intensity. For these results, this study will contribute to extend the applicability of VFS in establishing eco-friendly sediment control plans.

Analysis of Sediment Yields at Watershed Scale using Area/Slope-Based Sediment Delivery Ratio in SATEEC (SATEEC 시스템을 이용한 면적/경사도에 의한 유달률 산정 방법에 따른 유사량 분석)

  • Park, Younshik;Kim, Jonggun;Kim, Narnwon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.650-658
    • /
    • 2007
  • The Universal Soil Loss Equation (USLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the USLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to compute the sediment yield at any point in watershed. In this study, the SATEEC was applied to the Sudong watershed, Chuncheon Gangwon to compare the sediment yield using area-based sediment delivery ratio (SDRA) and slope-based sediment delivery ratio (SDRS) at watershed outlet. The sediment yield using the SDRA by Vanoni, SYA and the sediment yield using the SDRS by Willams and Berndt, SYS were compared for the same sized watersheds. The 19 subwatersheds was 2.19 ha in size, the soil loss and sediment yield were estimated for each subwatershed. Average slope of main stream was about 0.86~3.17%. Soil loss and sediment yield using SDRA and SDRS were distinguished depending on topography, especially in steep and flat areas. The SDRA for all subwatersheds was 0.762, however the SDRS were estimated in the range of 0.553~0.999. The difference between SYA and SYS was -79.74~27.45%. Thus site specific slope-based SDR is more effective in sediment yield estimation than area-based SDR. However it is recommended that watershed characteristic need to be considered in estimating yield behaviors.

Estimating Soil Loss in Alpine Farmland with RUSLE and SEDD (RUSLE와 SEDD를 이용한 고랭지 경작지로부터의 토양유실 평가)

  • Cho Hong-Lae;Jeoung Jong-Chul
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is to estimate quantitatively soil loss and sediment yield in alpine farmland. For this purpose, Naerinchon watershed in Gangwon province was selected as our study area and total annual soil loss and sediment yield was estimated respectively by the Revised Universal Soil Loss Equation (RUSLE) model and the Sediment Delivery Distributed (SEDD) model. The results of this study clearly show that dry field areas have significant impact on the total soil erosion and sediment yield compared with other land use. Dry field areas represent only $2.6\%$ of the total area of the watershed but soil loss and sediment yield account for $10.9\%$ and $33.12\%$ of the total amount respectively Especially as with alpine farmland, this result is more clearly shown. These areas account for $1.8\%$ of the entire watershed but contribute to $7.7\%$ and $15\%$ of the total soil loss and sediment yield respectively. From the above results, we can know that alpine farmland is important source of soil loss and sediment yield and it is need to prevent and control. soil erosion from alpine filmland urgently.

  • PDF

SOIL EROSION MODELING USING RUSLE AND GIS ON THE IMHA WATERSHED

  • Kim, Hyeon-Sik;Julien Pierre Y.
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.29-41
    • /
    • 2006
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. Sediment inflow from upland area has also deteriorated the water quality and caused negative effects on the aquatic ecosystem of the Imha reservoir. The Imha reservoir was affected by sediment-laden density currents during the typhoon 'Maemi' in 2003. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon 'Maemi'. The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon 'Maemi' were predicted as 3,450 tons/km2/year and 2,920 ton/km2/'Maemi', respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997. The trap efficiency of the Imha reservoir was calculated using the methods of Julien, Brown, Brune, and Churchill and ranges from 96% to 99%.

  • PDF

Simulation of the Reduction Effect of Soil Loss Using SWAT Model (SWAT 모형을 이용한 토양유실량 저감효과 모의)

  • Jeong, Jin-Kweon;Kim, Hwan-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.4
    • /
    • pp.243-253
    • /
    • 2008
  • The purpose of this study was to simulate the reduction effect of soil loss in the Yongdam reservoir watershed using SWAT model. To evaluate accuracy for flow and sediment yield of SWAT model, calibration was performed for the period from Jan. 2002 to Dec. 2003, and the verification for Jan. 2005 to Dec. 2005. The calibration and the verification were carried out using data observed at the Cheoncheon gaging station. The $R^2$ and EI values in terms of a flow were 0.8 and 0.78 respectively for calibration, whereas they for verification were 0.88 and 0.86 respectively. In terms of a sediment yield, they were 0.7 and 0.48 respectively for calibration, whereas for verification were 0.64 and 0.54 respectively. As a results from model simulation, annual mean soil loss rates in terms of forest, paddy and upland were 0.02 ton/ha/yr, 0.15 ton/ha/yr and 7.58 ton/ha/yr, respectively. The results show that the land use type of a upland has more significant impact on a total soil loss as well as a sediment yield than other types of land use. The sediment delivery ratio was determined to be about 0.35. In this study 2 land cover change scenarios for upland area were considered. These scenarios were used an input to SWAT model in order to evaluate their impact on soil loss and sediment delivery. The results show that a reduction of the upland area would reduce the soil loss and sediment yield.

Enhanced Sediment Assessment Tool for Effective Erosion Control (효과적인 토양유실 방지대책 수립을 위한 유사평가툴)

  • Lim, Kyoung-Jae;Engel, Bernard A.;Choi, Ye-Hwan;Choi, Joong-Dae;Kim, Ki-Sung;Shin, Yong-Cheol;Heo, Sung-Gu;Lyou, Chang Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.632-636
    • /
    • 2005
  • Accelerated soil erosion is a worldwide problem because of its economic and environmental impacts. To effectively estimate soil erosion and to establish soil erosion management plans, many computer models have been developed and used. The Revised Universal Soil Loss Equation (RUSLE) has been used in many countries, and input parameter data for RUSLE have been well established over the years. However, the RUSLE cannot be used to estimate the sediment yield for a watershed. Thus, the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to estimate soil loss and sediment yield for any location within a watershed using the RUSLE and a spatially distributed sediment delivery ratio. SATEEC was enhanced in this study by developing new modules to:1) simulate the effects of sediment retention basins on the receiving water bodies, 2) prepare input parameters for the Web-based sediment decision support system using a GIS interface. This easy-to-operate SATEEC system can be used to identify areas vulnerable to soil loss and to develop efficient soil erosion management plans.

  • PDF

The Performances of Sediment Trap for Reducing Water Pollutants and Soil Loss from Rainfall Runoff in Cropland (농경지 토양유실 및 수질오염물질 유출에 대한 침사구 조성 효과)

  • Park, Se-In;Park, Hyun-Jin;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.307-313
    • /
    • 2019
  • BACKGROUND: An intensive farming system may be of the most important source for agricultural non-point source (NPS) pollution, which is a major concern for agricultural water management in South Korea. Various management practices have therefore been applied to reduce NPS loads from upland fields. This study presents performances of sediment trap for reducing NPS and soil loss from rainfall runoff in cropland. METHODS AND RESULTS: In 2018 and 2019, three sediment traps (L1.5 m × W1.0 m × D0.5 m = 0.75 ㎥) and their controls were established in the end of sloped (ca. 3%) upland field planted with maize crops. Over the seasons, runoff water was monitored, collected, and analyzed at every runoff. Soils deposited in sediment traps were collected and weighed at the season end. Sediment traps reduced runoff amount (p<0.05) and NPS concentrations, though the decreased NPS concentrations were not always statistically significant. In addition, sediment traps had a significant prevention effect on soil loss from rainfall runoff in a sloped cropland. CONCLUSION: The results suggest that the sediment trap could be a powerful and the best management practice to reduce NPS pollution and soil loss in a sloped upland field.

Monthly Sediment Yield Estimation Based on Watershed-scale Application of ArcSATEEC with Correction Factor (보정계수 적용을 통한 유역에 대한 ArcSATEEC의 월별 토양유실량 추정 방안 연구)

  • Kim, Eun Seok;Lee, Hanyong;Yang, Jae E;Lim, Kyoung Jae;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.52-64
    • /
    • 2020
  • The universal soil loss equation (USLE), a model for estimating the potential soil loss, has been used not only in research areas but also in establishing national policies in South Korea. Despite its wide applicability, USLE cannot adequately address the effect of seasonal variances. To overcome this limit, the ArcGIS-based Sediment Assessment Tool for Effective Erosion (ArcSATEEC) has been developed as an alternative model. Although the field-scale (< 100 ㎡) application of this model produced reliable estimation results, it is still challenging to validate accuracy of the model estimation because it only estimates potential soil losses, not the actual sediment yield. Therefore, in this study, a method for estimating actual soil loss based on the ArcSATEEC model was suggested. The model was applied to eight watersheds in South Korea to estimate sediment yields. Correction factor was introduced for each watershed, and the estimated sediment yield was compared with that of the estimated yield by LOAD ESTimator (LOADEST). Sediment yield estimation for all watersheds exhibited reliable results, and the validity of the proposed correction factor was confirmed, suggesting the correction factor needs to be considered in estimating actual soil loss.

Long-term Environmental Changes: Interpretations from a Marine Benthic Ecologist's Perspective (II) -Eutrophication and Substratum Properties

  • Yoo Jae-Won;Hong Jae-Sang;Lee Jae June
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.210-217
    • /
    • 1999
  • Chemical oxygen demand (COD), phytoplankton cell number and chlorophyll-a concentration (Chl-a), sediment mean grain size and ignition loss were studied to determine their temporal trends in the study area. Historical data of COD, cell number and Chl-a were gathered from the late 1960s or early 1980s to 1997, and trends in temporal domain were obtained from a simple regression. Sediments for grain size and ignition loss (as organic contents in sediments) were sampled from the Chokchon macrotidal flat bimonthly from September 1990 to November 1996, and were analyzed using the decomposition method of time series analysis. In general, the first three data showed increasing trends based on regression analysis. The trends of sediment grain size fluctuated in a neutral pathway while those of ignition loss yielded no increasing pattern. In contrast with the suggestions from Ahn and Choi (1998) who reported a coarsening variation in sediment grain size to be a cause of the directional and remarkable changes of macrofaunal communities in this area, we could not find such a corresponding variation pattern from our samples. In diagnosing eutrophication, a paradoxical phenomenon was encountered between the trends in water column (COD, cell number and Chl-a) and sediment (ignition loss) data. In this paper, we inferred the possible processes that produce the discrepancy. Some explanations and biological responses to eutrophication were predicted and discussed.

  • PDF

The Determination of Resolution for Quantification of Soil Loss in GIS Environment (GIS 기반에서 토양침식의 정량화를 위한 해상도 결정에 관한 연구)

  • 장영률;이근상;조기성
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.301-316
    • /
    • 2002
  • Soil Loss by outflow of water or rainfall has caused many environmental problems as declining agricultural productivity, damaging pasture and preventing flow of water. Also, validity pondage of reservoir or dam is decreased by rivers inflow of eroded soil. Revised Universal Soil Loss Equation(RUSLE) is mainly used to presume soil loss amount of basin using GIS. But, because comparison with survey data is difficult, it is no large meaning that estimate calculated soil loss amount as quantitative. This research used unit sediment deposit survey data of Bo-seong basin for quantitative conclusion of soil loss amount that calculate on RUSLE. Through comparison examination with unit sediment yield that calculate on RUSLE and unit sediment deposit survey data, we can estimate resolution far RUSLE Model. As a result, cell size of 150m was estimated by thing which is most suitable.

  • PDF