• Title/Summary/Keyword: Seebeck coefficient

Search Result 155, Processing Time 0.022 seconds

The Thermoelectric Properties of p-type SiGe Alloys Prepared by RF Induction Furnace (고주파 진공유도로로 제작한 p형 SiGe 합금의 열전변환물성)

  • 이용주;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.432-437
    • /
    • 2000
  • Thermoelectric properties of p-type SiGe alloys prepared by a RF inductive furnace were investigated. Non-doped Si80Ge20 alloys were fabricated by control of the quantity of volatile Ge. The carrier of p-type SiGe alloy was controlled by B-doping. B doped p-type SiGe alloys were synthesized by melting the mixture of Ge and Si containing B. The effects of sintering/annealing conditions and compaction pressure on thermoelectric properties (electrical conductivity and Seebeck coefficient) were investigated. For nondoped SiGe alloys, electrical conductivity increased with increasing temperatures and Seebeck coefficient was measured negative showing a typical n-type semiconductivity. On the other hand, B-doped SiGe alloys exhibited positive Seebeck coefficient and their electrical conductivity decreased with increasing temperatures. Thermoelectric properties were more sensitive to compaction pressure than annealing time. The highest power factor obtained in this work was 8.89${\times}$10-6J/cm$.$K2$.$s for 1 at% B-doped SiGe alloy.

  • PDF

Thermoelectric properties of La(1-x)MxCoO3(M=Sr, Ca;x=0, 0.1) ceramics for thermal sensors

  • Kang, Min-Gyu;Cho, Kwang-Hwan;Kang, Chong-Yun;Kim, Jin-Sang;Kim, Sang-Sig;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2009
  • We have investigated the effects of dopant on the thermoelectric properties that $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics fabricated by the conventional solid state reaction method. The Seebeck coefficient of $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics was measured at wide temperature range from 300 K to 673 K. The thermoelectric properties(Seebeck coefficient and electrical resistivity) depend strongly on the kinds of dopants. Sr and Ca dopant decrease the Seebeck coefficient. Density of sintered $La_{0.9}Sr_{0.1}CoO_3$ ceramic at 1523 K was 7.12 $g/cm^2$ and Seebeck coefficient was 35 ${\mu}V/K$ at 663 K. However, the electrical resistivity of the Sr doped sample was low and stable.

Effects of Microstructure on Thermoelectric Properties of $FeSi_2$

  • Park, Joon-Young;Song, Tae-Ho;Lee, Hong-Lim;Pai, Chul-Hoon
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • The variation of electrical conductively and Seebeck coefficient of FeSi2 according to the density of the specimen has been observed over the temperature range 50 to $700^{\circ}C$. A conventional pressureless sintering method with various sintering time (0, 0.5, 1, 5h) at $1190^{\circ}C$ and/or various sintering temperatures(1160, 1175, 1190, $1200^{\circ}C$) for 2 h was carried out to prepare $FeSi_2$ specimens having various densities. The relationship between the electrical conductivity and Seebeck coefficient was investigated after two steps of annealing (at $865^{\circ}C$ and then $800^{\circ}C$ for total 160h) and thermoelectric measurement. The electrical conductivity for the specimens showed a typical tendency of semiconductor, the average activation energy of which in the intrinsic region (above $300^{\circ}C$) was observed approximately as 0.452 eV, and increased slightly with density. On the other hand, the specimen of the lower density showed the higher value of Seebeck coefficient in the intrinsic region. As the temperature fell into the non-degenerate region, the highly densified specimen which had relatively little residual metal phase showed the higher value of Seeback coefficient. The power factor of all specimens showed the optimum value at $200^{\circ}C$. However, the power factor of the specimen of the lower density increased again from $400^{\circ}C$ and that of the higher dense specimen increased from $500^{\circ}C$. The power factor was more affected by Seebeck coefficient than electrical conductivity over all temperature range.

  • PDF

The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2 (P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1883-1889
    • /
    • 2013
  • Although Fe-Si based alloy has lower figure of merit than Si-Ge alloy applied for space probe, its low cost related to abundant raw material, rather simple processing, high temperature resistance and reliability up to $800^{\circ}C$ made it one of the most promising middle temperature thermoelectric generation materials. The effect of particle size and additive on the thermoelectric properties of p-$FeSi_2$ prepared by a RF inductive furnace was investigated. The electrical conductivity increased slightly with decreasing particle size and hence better grain-to-grain connectivity due to the increase of density. The Seebeck coefficient exhibited the maximum value at about 600~800K and decreased slightly with increasing particle size. This must be due to the amount of residual metallic phase ${\varepsilon}$-FeSi. $Fe_2O_3$ and/or $Fe_3O_4$-doped specimens showed the higher electrical conductivity and the lower Seebeck coefficient due to increase of the metallic phase and Si-vacancy. On the other hand, $SiO_2$-doped specimen showed the higher electrical conductivity and the higher Seebeck coefficients.

Thermoelectric Seebeck and Peltier effects of single walled carbon nanotube quantum dot nanodevice

  • El-Demsisy, H.A.;Asham, M.D.;Louis, D.S.;Phillips, A.H.
    • Carbon letters
    • /
    • v.21
    • /
    • pp.8-15
    • /
    • 2017
  • The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated, taking into consideration a certain value of applied tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. In this three-terminal device, the conducting substance is the gate electrode. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier coefficients have random oscillation as a function of gate voltage in the Coulomb blockade regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Peltier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvesting (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).

Thermoelectric Properties of Mn-doped FeSi2 (Mn 첨가 FeSi2의 열전변환특성)

  • Pai, Chul-Hoon;Park, Hyoung-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.315-320
    • /
    • 2008
  • The effect of Mn additive on the thermoelectric properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of temperature under Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased with increasing temperatures showing typical semiconducting behavior. The electrical conductivity of Mn-doped specimens are higher than that of undoped specimens and increased slightly with increasing the amount of Mn additive. This must be due to the difference in carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi(The ${\varepsilon}$-FeSi was detected in spite of 100 h annealing treatment at $830^{\circ}C$). And metallic conduction increased slightly with increasing the amount of Mn additive. On the other hand, Mn-doped specimens showed the lower Seebeck coefficient due to metallic phase. The power factor of Mn-doped specimens are higher than that of undoped specimens and would be affected by the electrical conductivity more than Seebeck coefficient.

Electrical Properties of n-type Co-doped Fe-Si Alloy (Co 첨가 Fe-Si n형 반도체의 전기적 특성)

  • Pai, Chul-Hoon;Kim, Jeung-Gon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.860-865
    • /
    • 2009
  • The effect of Co additive on the electrical properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of the temperature under an Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased as the temperature increased, showing typical semiconducting behavior. The electrical conductivity of Co-doped specimens was higher than that of undoped specimens and increased slightly as the amount of Co additive increased. This is most likely due to the difference in the carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi (The ${\varepsilon}$-FeSi was detected in spite of an annealing treatment of 100 h at $830^{\circ}C$). Additionally, metallic conduction increased slightly as the amount of Co additive increased. On the other hand, Co-doped specimens showed a lower Seebeck coefficient due to the metallic phase. The power factor of Co-doped specimens was higher than that of undoped specimens. This would be affected more by the electrical conductivity compared to the Seebeck coefficient.

An Effect of Fe2O3 Additive on a Seebeck Coefficient and a Power Factor for SmCoO3 Perovskite System (SmCoO3 페롭스카이트 계 열전소재에서 Fe2O3 첨가제가 출력인자에 미치는 영향)

  • Jung, Kwang-Hee;Choi, Soon-Mok;Seo, Won-Seon;Park, Hyung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.457-460
    • /
    • 2010
  • $SmCoO_3$ system was investigated for their application to themoelectric materials. All specimens showed p-type semiconducting behavior and their electrical conductivity ($\sigma$), Seebeck coefficient (S) and power factor were measured at high temperature. And the effect of dopant ions on their thermoelectrical properties were also investigated. $Fe^{3+}$ ion doped into $Co^{3+}$ site enhanced the Seebeck coefficient and decreased the electrical conductivity simultaneously. The maximum Seebeck coefficient value for 60% doping case reached to 780 ${\mu}V$/K at $240^{\circ}C$. However $Fe^{3+}$ doped system cause an negative effect on power factor value. In case of the pure phase, the maximum Seebeck coefficient value reached to 290 ${\mu}V$/K at $240^{\circ}C$ and the maximum electrical conductivity was obtained 748 1/(ohm$\times$cm) at $960^{\circ}C$. As a result, the maximum power factor was obtained $1.49\times10^{-4}$ W/$mK^2$ at $550^{\circ}C$.

Thickness and Annealing Effects on the Thermoelectric Properties of N-type $Bi_2Te_{2.4}Se_{0.6}$ Thin Films (N형 $Bi_2Te_{2.4}Se_{0.6}$ 박막의 열전 특성에 미치는 두께 및 열처리 효과)

  • Kim Il-Ho;Jang Kyung-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.153-158
    • /
    • 2005
  • The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties of flash-evaporated n-type $Bi_2Te_{2.4}Se_{0.6}$ thin films. Annealing effects on the electron concentration and mobility were also studied, and their variations were analyzed in conjunction with antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the mean free path was found to be $5120\AA$ Electron mobility was increased by annealing treatment and electron concentration was decreased considerably due to reduction of antisite defects, so that electrical conductivity was decreased and Seebeck coefficient was increased. When annealed at 473k for 1 hour, Seebeck coefficient and electrical conductivity were $-200\;\mu V/k\;and\;510\omega^{-1}cm^{-1}$, respectively. Therefore, the thermoelectric power factor was improved to be $20\times10^{-4}\;W/(mK^2)$.

Electrodeposition of Antimony Telluride Thin Films and Composition-Dependent Thermoelectric Characterization

  • Kim, Jiwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2020
  • Antimony telluride (SbxTey) thin films were synthesized by an electrodeposition method with a control of applied potential at room temperature. Characterization of electrical and thermoelectric properties such as conductivity, Seebeck coefficient, and power factor (P.F.) were conducted as a function of the chemical composition of the electrodeposited films. Morphology of thin films were dense and uniform and the composition was tailored from 25 to 60 at.% of the Sb content by altering the applied potential from -0.13 to -0.27 V (vs. SCE). The conductivity of the films were ranged from 2 × 10-4 ~ 5 × 10-1 S/cm indicating their amorphous behavior. The meaured Seebeck coefficient of films were relatively high compared to that of bulk single cyrstal SbxTey due to their low carrier concentration. The variation of the Seebeck coefficient of the films was also related to the change of chemical composition, showing the power factor of ~10 ㎼/mK2.