• Title/Summary/Keyword: Segmental lining design

Search Result 12, Processing Time 0.024 seconds

Stress and strain state in the segmental linings during mechanized tunnelling

  • Do, Ngoc-Anh;Oreste, Pierpaolo;Dias, Daniel;Antonello, Croce;Djeran-Maigre, Irini;Livio, Locatelli
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.75-85
    • /
    • 2014
  • The application of the mechanized tunnelling has been extended in recent years. There are at present different approaches that are used in the design of segmental tunnel linings supported in mechanized tunnels. Even though segmental lining is utilized for mechanized tunnels, its behaviour is still quite unclear under in situ stress and there is a lack of data regarding the distribution of stresses inside segmental linings. So far no single effective calculation method exists for segmental lining design. The lack of clear solutions makes the use of segmental lining to be more expensive due to the adoption of greater safety factors. Therefore, a particular attention must be given in order to obtain data from monitored tunnels which permits to validate design methods. In this study, strain measurements, which were conducted during the construction of twin tunnels in the Bologna-Florence railway line, have been presented. The behaviour of segmental lining during the excavation and the influence of a new tunnel excavation on an existing tunnel have been shown through the measured data. The data are then compared with the results obtained with Einstein and Schwartz's method and Duddeck and Erdmann's method, which permits to highlight the fact that the two analytical methods underestimate structural forces induced in the segmental lining and then must be used with caution.

Development of optimized TBM segmental lining design system (TBM 세그먼트 라이닝 최적 설계 시스템 개발)

  • Woo, Seungjoo;Chung, Eunmok;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.13-30
    • /
    • 2016
  • This paper concerns the development of an optimized TBM segmental lining design system for a subsea tunnel. The subsea tunnel is normally laid down under the sea water and submarine ground which consists of soil or rock. The design system is the series of process which can predict segmental lining member forces by ANN (artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions. Finally, this lining design system aims to be connected with a BIM system for designing the subsea tunnel automatically. The lining member forces are predicted based on the ANN which was calculated by a FEM (finite element analysis) and it helps designers determine its segmental lining dimension easily without any further FE calculations.

Dynamic responses of shield tunnel structures with and without secondary lining upon impact by a derailed train

  • Yan, Qixiang;Li, Binjia;Deng, Zhixin;Li, Bin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.741-750
    • /
    • 2018
  • The aim of this study was to investigate the mechanical responses of a high-speed railway shield tunnel subjected to impact by a derailed train, with emphasis on the protective effect of the secondary lining. To do so, the extended finite element method was used to develop two numerical models of a shield tunnel including joints and joint bolts, one with a cast-in-situ concrete secondary lining and one without such a lining. The dynamic responses of these models upon impact were analyzed, with particular focus on the distribution and propagation of cracks in the lining structures and the mechanical responses of the joint bolts. The numerical results showed that placing a secondary lining significantly constricted the development of cracking in the segmental lining upon the impact load caused by a derailed train, reduced the internal forces on the joint bolts, and enhanced the safety of the segmental lining structure. The outcomes of this study can provide a numerical reference for optimizing the design of shield tunnels under accidental impact loading conditions.

The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation

  • Liu, Xian;Hu, Xinyu;Guan, Linxing;Sun, Wei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.481-497
    • /
    • 2017
  • In this paper, full-scale loading tests were performed on a rectangular segmental tunnel lining, which was assembled by steel composite segments, to investigate its load-bearing structural behavior and failure mechanism. The tests were also used to confirm the composite effect by adding concrete inside to satisfy the required performance under severe loading conditions. The design of the tested rectangular segmental lining and the loading scheme are also described to better understand the bearing capacity of this composite lining structure. It is found that the structural ultimate bearing capacity is governed by the bond capacity between steel plates and the tunnel segment. The failure of the strengthened lining is the consequence of local failure of the bond at waist joints. This led to a fast decrease of the overall stiffness and eventually a loss of the structural integrity.

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.

A knowledge-based study on design of NATM lining for subsea tunnels (지식기반 개념을 이용한 해저터널의 NATM 터널의 라이닝 설계)

  • Sin, Chunwon;Woo, Seungjoo;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.195-211
    • /
    • 2016
  • This paper concerns a study of a knowledge-based NATM tunnel lining design for subsea tunnels. Concept for tunnel automation designing system, the development of Artificial Neural Network based technology of the tunnel design system, the learning process and verification of the technology forecasting member forces were described. The design system is the series of process which can predict segmental lining member forces by ANN(artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions using a FEM(finite element analysis). The lining member forces are predicted based on the ANN quickly and it helps designers determine its segmental lining dimension easily.

TBM segment lining section design of hypothetical subsea tunnels (가상 해저터널 TBM공법 적용 시 세그먼트 단면설계)

  • Choi, Jung-Hyuk;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.49-63
    • /
    • 2015
  • In this paper, the results of evaluation on the member forces in the virtual subsea tunnel lining segments and optimal thickness of the segment with changes in depth were presented. To evaluate member forces on the hypothetical subsea tunnelling cases were developed and the segmental lining member forces were calculated by performing structural analysis using the 2-Ring Beam model. Through a preliminary reinforcement design review of the cross-section using calculated member force, optimal reinforcement design was selected. Based on the results, the variations of member forces with construction conditions such as the cover depth and the hydraulic pressure are presented. In addition, optimum segment lining designs were developed for various tunnelling conditions.

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

A study on the design of shield tunnel lining in high water pressure condition (고수압 조건에서 쉴드터널 세그먼트 라이닝 구조설계에 관한 연구)

  • Lee, Young-Joon;Kim, Ki-Lim;Jeong, Keon-Woong;Hong, Eui-Joon;Kim, Seon-Hong;Jun, Duk-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.227-236
    • /
    • 2015
  • In impermeable ground, water pressure is applied due to discontinuity such as joint or fissure. Therefore, water pressure should be considered in design regardless of ground condition. However, when the shape of segmental lining is circular, water pressure may reduce the lining member force, so it is important to define the assumption and the concept of design in case of high water pressure. This paper presents the concepts of design of the lining of shield tunnel at high water pressure and in impermeable ground condition. In addition, the member forces in various load conditions were compared in this study. (elastic equation, closed form solutions, beam-spring model).

A modified shell-joint model for segmental tunnel dislocations under differential settlement

  • Jianguo Liu;Xiaohui Zhang;Yuyin Jin;Wenyuan Wang
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.411-424
    • /
    • 2023
  • Reasonable estimates of tunnel lining dislocations in the operation stage, especially under longitudinal differential settlement, are important for the design of waterproof gaskets. In this paper, a modified shell-joint model is proposed to calculate shield tunnel dislocations under longitudinal differential settlement, with the ability to consider the nonlinear shear stiffness of the joint. In the case of shell elements in the model, an elastoplastic damage constitutive model was adopted to describe the nonlinear stress-strain relationship of concrete. After verifying its applicability and correctness against a full-scale tunnel test and a joint shear test, the proposed model was used to analyze the dislocation behaviors of a shield tunnel in Shanghai Metro Line 2 under longitudinal differential settlement. Based on the results, when the tunnel structure is solely subjected to water-earth load, circumferential and longitudinal joint dislocations are all less than 0.1 mm. When the tunnel suffers longitudinal differential settlement and the curvature radius of the differential settlement is less than 300 m, although maximum longitudinal joint dislocation is still less than 0.1 mm, the maximum circumferential joint dislocation is approximately 10.3 mm, which leads to leakage and damage of the tunnel structure. However, with concavo-convex tenons applied to circumferential joints, the maximum dislocation value reduces to 4.5 mm.