• Title/Summary/Keyword: Self support retaining wall

Search Result 7, Processing Time 0.025 seconds

A Study on a Self-supported Earth Retaining Wall with Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 개발)

  • Sim, Jae-Uk;Back, Sung-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1461-1467
    • /
    • 2005
  • In this study, a new earth retention system has been developed and introduced. This system is a self-supported earth retaining wall without struts. The new earth retention system consists of connected double H-pile and wale. This system provides a larger spacing of support, economical benefit, construction easiness, good performance and safety. This paper explains basic principles and mechanism of self-supported earth retaining wall. In order to investigate applicability and safety of this system, numerical analysis was performed. The finite differential method program, FLAC3D is used. The predicted performances of this system were presented and discussed.

  • PDF

A Case Study on the Self-Supported earth Retaining wall (2열 자립식 흙막이 공법(SSR) 시공사례 연구)

  • Lee, Gyu-Dong;Son, Sung-Gon;Sim, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.85-86
    • /
    • 2011
  • The temporary support system in Korea have been carried out generally along with installing supports, which are struts, anchors, rakers. However, most of existing support systems in application relatively have limitations such as cost increase, construction configuration, and displacement occurred with support systems. Thus, a new retaining support system(referred to as the SSR, NET No.533) was developed to solve the aforementioned problems. This study introduces the design, construction, and maintenance of the SSR system under the different construction conditions. The behavior and characteristics of the SSR system were identified based on the case studies.

  • PDF

A Case Study on the Self-Supported Earth Retaining Wall with Different Formations (다양한 형태의 2열 자립식 흙막이 공법 시공사례 연구)

  • Sim, Jae-Uk;Kim, Kyoung-Chul;Son, Sung-Gon;Park, Young-Jin;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1039-1049
    • /
    • 2010
  • Excavation support systems are the temporary earth retaining structures that can prevent the lateral movement of soils. The systems are initially performed before other construction operations and have a great impact on the entire construction period. The temporary support system in Korea have been carried out generally along with installing supports, which are struts, tiebacks, and rakers. However, most of existing support systems in application relatively have limitations such as cost increase, construction configuration, and displacement occurred with support systems. Thus, a new retaining support system (referred to as the SSR, New Construction Technology No. 533) was developed to solve the aforementioned problems. This study introduces the design, construction, and maintenance of the SSR system under the different construction conditions. The behavior and characteristics of the SSR system were identified based on the case studies.

  • PDF

Numerical Analysis of Self-Supported Earth Retaining Wall with Stabilizing Piles (2열 자립식 흙막이 공법의 거동특성에 관한 수치해석적 연구)

  • Sim, Jae-Uk;Jeong, Sang-Seom;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.35-46
    • /
    • 2015
  • In this study, the behavior of self-supported earth retaining wall with stabilizing piles was investigated by using a numerical study and field tests in urban excavations. This earth retaining wall can provide stable support against lateral earth pressures through its use of stabilizing piles that provide passive resistance to lateral earth pressures arising due to ground excavations. Field tests at two sites were performed to verify the performance of instrumented retaining wall with stabilizing piles. Furthermore, detailed 3D numerical analyses were conducted to provide insight into the in situ wall behavior. The 3D numerical methodology in the present study represents the behavior of the self-supported earth retaining wall with stabilizing piles. A number of 3D numerical analyses were carried out on the self-supported earth retaining wall with stabilizing piles to assess the results stemming from wide variations of influencing parameters such as the soil condition, the pile spacing, the distance between the front pile and the rear pile, and the pile embedded depth. Based on the results of the parametric study, the maximum horizontal displacement and the maximum bending moment significantly decreased when the retaining wall with stabilizing piles is used. Moreover, the horizontal displacement reduction effect of influencing parameters such as the pile spacing and the distance between the front pile and the rear pile is more sensitive in sandy soil, with a higher friction angle compared to clayey soil. In engineering practice, reducing the pile spacing and increasing the distance between the front pile and the rear pile can effectively improve the stability of the self-supported earth retaining wall with stabilizing piles.

A Study on the Self-contained Earth Retaining Wall Method Using Bracing (브레이싱을 이용한 자립식 흙막이 공법에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • In a construction site, excavation work has a close relation with temporary earth retaining structure. In order to build the underground structure most effectively in a narrow space, prevent soil relaxation of the external behind ground in excavation work, and maintain a ground water level, it is required to install a temporary earth retaining structure that secures safety. To prevent soil washoff in underground excavation work, the conventional method of temporary earth retaining structure is to make a temporary wall and build the internal support with the use of earth anchor, raker, and struct for excavation work. RSB method that improves the problem of the conventional method is to remove the internal support, make use of two-row soldier piles and bracing, and thereby to resist earth pressure independently for underground excavation. This study revealed that through the field application cases of RSB method and the measurement result, the applicability of the method for installing a temporary earth retaining structure, the assessment result, and displacement all met allowable values of measurement, and that the RSB method, compared to the conventional method, improved constructability and economy.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.

A Study on the Effective Restraint Method of Lateral Displacement of an Inclined Earth Retaining Structure in Soft Clay (연약점토지반에 설치된 IER 지주식 흙막이의 효과적인 수평변위억제 방법에 관한 연구)

  • Kim, Jayoung;Im, Jong-Chul;Seo, Minsu;Kim, Changyoung;Park, Eun Kyeong;Park, Tae Keon
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.15-24
    • /
    • 2017
  • A self-supported temporary excavation method called Inclined Earth Retaining structure (IER) has been developed by improving an existing excavation method. The stability of the IER was proved with both model tests and field tests. Especially, the results of the model tests proved that the lateral displacement of a model retaining wall was significantly reduced in clay. In this study, the applicability of the IER installed in the soft clay ground is estimated by analyzing survey data collected in the construction field. The results of FE analysis show that the lateral displacement of the IER decreased by 70.9% of that of a single row, self-supported retaining wall using the same number of H-piles. Thus, using the IER method in the soft clay ground will increase the stability of the excavated ground with the effect restraining its lateral displacement. Furthermore, using Deep Cement Mixing (DCM) to the upper half embedded depth of front support is recommended as a subsidiary method of reducing the lateral displacement of IER in the soft clay ground based on FE analysis results.