• Title/Summary/Keyword: Semi-Permeability

Search Result 42, Processing Time 0.027 seconds

Osmotic Pressure Induced by Semi-Permeability of Hardened Cement Paste and Cement Mortar (시멘트 경화체의 반투과성에 따른 삼투압의 발생에 관한 검토)

  • 배기선;김용로;박선규;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.160-165
    • /
    • 1999
  • Osmotic pressure induced by semi-permeability of hardened cement pasts and cement mortar was studied, which was considered to be a cause of failure such as separation and blistering of floor coatings or wall coatings from the concrete substrate. The specimens with a water cement ratio of 45, 60 and 75% were installed between the solution of sodium chloride and distilled water. First, we measured water flux from distilled water to sodium chloride and the ion flux of Na+ and Cl- through the specimens. Then, we measured osmotic pressure induced by semi-permeability of the specimens using an apparatus which was specially developed for this study. It was made clear that hardened cement paste and cement mortar have properties of semipermeability, and the osmotic pressure is closely related to their water cement ratio. Finally, we calculated the osmotic pressure according to Staverman's equation, which was obtained for organic membranes, and tried to explain quantitatively the observed pressure.

  • PDF

ERROR BOUNDS FOR NONLINEAR MIXED VARIATIONAL-HEMIVARIATIONAL INEQUALITY PROBLEMS

  • A. A. H. Ahmadini;Salahuddin;J. K. Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.15-33
    • /
    • 2024
  • In this article, we considered a class of nonlinear variational hemivariational inequality problems and investigated a gap function and regularized gap function for the problems. We discussed the global error bounds for such inequalities in terms of gap function and regularized gap functions by utilizing the Clarke generalized gradient, relaxed monotonicity, and relaxed Lipschitz continuous mappings. Finally, as applications, we addressed an application to non-stationary non-smooth semi-permeability problems.

Effect of Concentration of Solution and Temperature on Water Flux by Semi-Permeability of Hardened Cement Paste (시멘트경화체의 반투과성에 의한 수분이동에 미치는 용액농도와 환경온도의 영향)

  • 배기선;오상근;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.131-136
    • /
    • 1997
  • It is well known that concrete is typical porous material. We pay attention to Hansen's idea that concrete may be expected to act as semi-permeable membrane, and report the effect of concentration of solution and temperature on water flux in forward osmosis. In order to measuring volume of water flux from distilled water to solution of sodium chloride through hardened cement paste, specially designed apparatus was constructed, and the following result were obtained: (1) hardened cement paste acts as semi-permeable membrane, consequently, water flux in forward osmosis may occur. (2) Rate of water flux is proportion to concentration of dilute solution, and this suggests hardened cement paste is agreeable to the theory of membrane. (3) Effect of temperature on water flux is agreeable to Arrehenius equation and is great.

  • PDF

Variation of the Relaxation Time for NiCuZn Ferrites with Magnetic Properties

  • Nam, Joong-Hee;Oh, Jae-Hee
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.37-41
    • /
    • 1996
  • The frequency dependence of complex permeability for various NiCuZn ferrites was investigated. The variation of complex permeability for NiCuZn ferrites can be presented as a form of a semi-circle, so called the Cole-Cole plot, and the relaxation phenomena were explained with various shapes of the plots. The relaxation time $\Upsilon$ was calculated from $f_rx$, which is a relaxation frequency at ${\mu"}_{max}$. Relations between anisotropy field $H_A$ and relaxation time $\Upsilon$, initial permeability $\mu_i$ and $H_A$ were plotted to identify the frequency dependence of complex permeability.lity.

  • PDF

One-dimensional Analytical Solutions for Diffusion from a Low-permeability Layer (1차원 해석해를 이용한 저투수성 매체에서의 확산에 관한 연구)

  • Jang, Seonggan;Yang, Minjune
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • One-dimensional analytical solutions were used for forward and back diffusion of trichloroethylene (TCE) and tetrachloroethylene (PCE) in a single system with high- and low-permeability layers. Concentration profiles in a low-permeability layer, diffusive fluxes at the interface between the high- and low-permeability layers, and contaminant persistence in the high-permeability layer due to back diffusion were simulated with a comparison of semi-infinite and finite analytical solutions. In order to validate the analytical solutions used in this study, the results of one-dimensional analytical solutions developed by Yang et al. (2015) were compared with Nash-Sutcliffe model efficiency coefficient (NSE). When compared with Yang et al. (2015), the analytical solutions used in this study showed good agreements (NSE = 0.99). When compared with semi-infinite analytical solutions, TCE and PCE concentration profiles in the low-permeability layer, the diffusive fluxes, and the contaminant tailings of the high-permeability layer were underestimated. In order to determine the appropriate analytical solutions based on the effective diffusion coefficient, the thickness of the low-permeability layer, and the diffusion time in the TCE and PCE contaminated site, a term of dimensionless diffusion length (Zd) was used. If the Zd is less than 0.7, the semi-infinite solutions can be used to simulate accurate concentration profiles in low-permeability layers. If the Zd is greater than 0.7, the reliability of simulations may be improved by using the finite solutions.

Optimization for Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.548-556
    • /
    • 2016
  • Recently, porous alumina-based ceramics have been extensively applied in the semi-conductor and display industries, because of their high mechanical strength, high chemical resistance, and high thermal resistance. However, the high electrical resistance of alumina-based ceramics has a negative effect in many applications due to the generation of static electricity. The low electrical resistance and high air permeability are key aspects in using porous alumina-based ceramics as vacuum chucks in the semi-conductor industry. In this study, we tailored the pore structure of porous alumina-based ceramics by adjusting the mixing ratio of the starting alumina, which has different particle sizes. And the electrical resistance was controlled by using chemical additives. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimetry, capillary flow porosimetry, a universal testing machine, X-ray diffraction, and a high-resistance meter.

One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading

  • Liu, Weizheng;Shi, Zhiguo;Zhang, Junhui;Zhang, Dingwen
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-313
    • /
    • 2019
  • This research investigated the nonlinear compressibility, permeability, the yielding due to structural degradation and their effects on consolidation behavior of structured soft soils. Based on oedometer and hydraulic conductivity test results of natural and reconstituted soft clays, linear log (1+e) ~ $log\;{\sigma}^{\prime}$ and log (1+e) ~ $log\;k_v$ relationships were developed to capture the variations in compressibility and permeability, and the yield stress ratio (YSR) was introduced to characterize the soil structure of natural soft clay. Semi-analytical solutions for one-dimensional consolidation of soft clay under time-dependent loading incorporating the effects of soil nonlinearity and soil structure were proposed. The semi-analytical solutions were verified against field measurements of a well-documented test embankment and they can give better accuracy in prediction of excess pore pressure compared to the predictions using the existing analytical solutions. Additionally, parametric studies were conducted to analyze the effects of YSR, compression index (${\lambda}_r$ and ${\lambda}_c$), and permeability index (${\eta}_k$) on the consolidation behavior of structured soft clays. The magnitude of the difference between degree of consolidation based on excess pore pressure ($U_p$) and that based on strain ($U_s$) depends on YSR. The parameter ${\lambda}_c/{\eta}_k$ plays a significant role in predicting consolidation behavior.

Coupled Finite Element Analysis for Semi-implicit Linear and Fully-implicit Nonlinear Scheme in Partially Saturated Porous Medium

  • Kim, Jae-Hong;Regueiro, Richard A.
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The paper presents a comparison between a semi-implicit time integration linear finite element implementation and fully-implicit nonlinear Newton-Raphson finite element implementation of a triphasic small strain mixture formulation of an elastic partially saturated porous medium. The pore air phase pressure pa is assumed atmospheric, i.e., $p_a$ = 0, although the formulation and implementation are general to handle increase in pore air pressure as a result of loading, if needed. The solid skeleton phase is assumed linear isotropic elastic and partially saturated 'consolidation' in the presence of surface infiltration and traction is simulated. The verification of the implementation against an analytical solution for partially saturated pore water flow (no deformation) and comparison between the two implementations is presented and the important of the porosity-dependent nature of the partially saturated permeability is assessed on comparison with a commercial code for the partially saturated flow with deformation. As a result, the response of partially saturated permeability subjected to the porosity influences on the saturation of a soil, and the different behaviors of the partially saturated soil between staggered and monolithic coupled programs is worth of attention because the negative pore water pressure in the partially saturated soil depends on the difference.

Permeability and Consolidation Characteristics of Clayey Sand Soils (점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가)

  • Kim, Kwangkyun;Park, Duhee;Yoo, Jin-Kwon;Lee, Janggeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.61-70
    • /
    • 2013
  • Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.