• Title/Summary/Keyword: Semi-Submergible Platform

Search Result 4, Processing Time 0.022 seconds

Experimental Study on Dynamic Positioning Contol of a Semi-Submergible Platform (반잠수식 해양구조물의 동위치제어에 관한 실험적 연구)

  • 김성근;유휘룡;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.661-669
    • /
    • 1995
  • This paper presents a design method of dynamic positioning control system in view ofpractical design concept for reliability and robust realization. This method adopts a design method of multivariable robust servo system. The practical experiments of the dynamic positioning control were carried out for a semi-submersible 2-lower hull type platform model with 4 rotatable thrusters in a small water tank. The results fo overall experiment show that the proposed position control method will be an efficient method to the better control performance of dynamic positioning system under serere environment and it is substentially practicable for the platform.

Dynamic Positioning Control of Floating Platform using $H_{\infty}$ Control Method ($H_{\infty}$ 제어법을 이용한 부유식 플랫폼의 동위치 제어)

  • 유휘룡;김환성;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.153-161
    • /
    • 1996
  • This paper presents a design method of dynamic positioning control system for floating platform with rotatable and retractable thruster using $H_{\infty}$ control technique. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying $H_{\infty}$ synthesis. The control law satisfying robust stabillity and nominal performance condition is determined through the mixed sensitivity approach. The evaluation for the resultant controller obtained by $H_{\infty}$ synthesis is done through simulations of the closed loop system. The results of $H_{\infty}$ synthesis are compared to those of the traditional LQ synthesis method.

  • PDF

Dynamic Positionning Control of Floating Platform Using H$_{\infty}$ Control Method (H$_{\infty}$제어법을 이용한 부유식 플랫폼의 동위치 제어)

  • 유휘룡;김성민;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.437-442
    • /
    • 1996
  • The paper presents a design method of dynamic positioning control system for floating platform with rotatable and retractable thruster using $H_{\infty}$control technique. The norm band of uncertaintyis captured by multiplicative perturbation between nominalmodel and reduced order model. A controller robust to theuncertainty is designed applying $H_{\infty}$synthesis. The control law satisfying robust stability and nominal performance condition is determined through the mixed sensitivity approach. The evaluation for the resultant controller obtained by $H_{\infty}$synthesis is done through simulations of the closed loop system. The results of $H_{\infty}$synthesis are compared to those of the traditional LQ synthesis method. method.

  • PDF

Viscous Mean Drift Forces on a Floating Vertical Cylinder in Waves and Currents (파랑과 조류에 의한 부유식 수직 실린더 구조물에 작용하는 평균 점성 표류력)

  • Shin, Dong Min;Moon, Byung Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.503-509
    • /
    • 2020
  • In offshore floating structures, the viscous mean drift force due to drag is considered a design part that has not been considered until recently. In this paper, an analytical solution for the viscous mean drift forces on a floating vertical cylinder considering the waves and currents was obtained. The area was considered by dividing it into a splash zone above the free surface and a submerged zone below the free surface. In the case of waves, only the splash zone was considered; in the case of waves and currents, equations were obtained in both the splash zone and the submerged zone. The RAO results of previous studies were used to compare the calculated results with the drift forces acting on the fixed cylinder. Except for the case in only waves in the splash zone, the viscous mean drift force acting on the floating cylinder was larger than the drift force acting on the relatively fixed cylinder in most frequencies. In particular, the increase was greater when the currents were considered to be more important. Therefore, these results provide the inference for the viscous drift force due to drag in the design of floating offshore structures.