• Title/Summary/Keyword: Semi-implicit integration

Search Result 10, Processing Time 0.03 seconds

Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity (점소성 구성식의 적분에 미치는 선형화 방법의 영향)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

Integration of Stress-Strain Rate Equations of CASM

  • Koh, Tae-Hoon
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In transportation geotechnical engineering, stress-strain behavior of earth structures has been analyzed by numerical simulations with the implemented plasticity constitutive model. It is a fact that many advanced plasticity constitutive models on predicting the mechanical behavior of soils have been developed as well as experimental research works for geotechnical applications in the past decades. In this study, recently developed, a unified constitutive model for both clay and sand, which is referred to as CASM (clay and sand model), was compared with a classical constitutive model, Cam-Clay model. Moreover, integration methods of stress-strain rate equations using CASM were presented for simulation of undrained and drained triaxial compression tests. As a conclusion, it was observed that semi-implicit integration method has more improved accuracy of capturing strain rate response to applied stress than explicit integration by the multiple correction and iteration.

  • PDF

Coupled Finite Element Analysis for Semi-implicit Linear and Fully-implicit Nonlinear Scheme in Partially Saturated Porous Medium

  • Kim, Jae-Hong;Regueiro, Richard A.
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The paper presents a comparison between a semi-implicit time integration linear finite element implementation and fully-implicit nonlinear Newton-Raphson finite element implementation of a triphasic small strain mixture formulation of an elastic partially saturated porous medium. The pore air phase pressure pa is assumed atmospheric, i.e., $p_a$ = 0, although the formulation and implementation are general to handle increase in pore air pressure as a result of loading, if needed. The solid skeleton phase is assumed linear isotropic elastic and partially saturated 'consolidation' in the presence of surface infiltration and traction is simulated. The verification of the implementation against an analytical solution for partially saturated pore water flow (no deformation) and comparison between the two implementations is presented and the important of the porosity-dependent nature of the partially saturated permeability is assessed on comparison with a commercial code for the partially saturated flow with deformation. As a result, the response of partially saturated permeability subjected to the porosity influences on the saturation of a soil, and the different behaviors of the partially saturated soil between staggered and monolithic coupled programs is worth of attention because the negative pore water pressure in the partially saturated soil depends on the difference.

A Study on Natural Convection from Two Cylinders in a Cavity

  • Mochimaru Yoshihiro;Bae Myung-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1773-1778
    • /
    • 2006
  • Steady-state natural convection heat transfer characteristics from cylinders in a multiply-connected bounded region are clarified. A spectral finite difference scheme (spectral decomposition of the system of partial differential equations, semi-implicit time integration) is applied in numerical analysis, with a boundary-fitted conformal coordinate system through a Jacobian elliptic function with a successive transformation to formulate a system of governing equations in terms of a stream function, vorticity and temperature. Multiplicity of the domain is expressed explicitly.

A Semi-Implicit Integration for Rate-Dependent Plasticity with Nonlinear Kinematic Hardening (비선형 이동경화를 고려한 점소성 모델의 내연적 적분)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1562-1570
    • /
    • 2003
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. The radial return mapping is one of the most robust integration scheme currently used. Nonlinear kinematic hardening model of Armstrong-Fredrick type has recovery term and the direction of kinematic hardening increment is not parallel to that of plastic strain increment. In this case, The conventional radial return mapping method cannot be applied directly. In this investigation, we expanded the radial return mapping method to consider the nonlinear kinematic hardening model and implemented this integration scheme into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using Newton method and bisection method. Using dynamic yield condition derived from linearization of flow rule, the integration scheme for elastoplastic and viscoplastic constitutive model was unified. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

Prediction of Oil Amount Leaked from Damaged Tank Using 2-dimensional Particle Simulation (파손된 탱크의 기름 유출량 산정을 위한 2차원 입자법 시뮬레이션)

  • Nam, J.W.;Hwang, S.C.;Park, J.C.;Kim, M.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.278-285
    • /
    • 2011
  • In the present study, the numerical prediction of the oil amount leaked from the hole of a damaged tank is investigated using the improved MPS (Moving Particle Semi-implicit) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow. The governing equations, which consist of the continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators should be replaced by the particle interaction models based on a Kernel function. The simulation results are validated though the comparison with the analytic solution based on Torricelli's equilibrium relation. Furthermore, a series of numerical simulations under the various conditions are performed in order to estimate more accurately the initial amount of leaked oil.

  • PDF

IRK vs Structural Integrators for Real-Time Applications in MBS

  • Dopico D.;Lugris U.;Gonzalez M.;Cuadrado J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.388-394
    • /
    • 2005
  • Recently, the authors have developed a method for real-time dynamics of multibody systems, which combines a semi-recursive formulation to derive the equations of motion in dependent relative coordinates, along with an augmented Lagrangian technique to impose the loop closure conditions. The following numerical integration procedures, which can be grouped into the so-called structural integrators, were tested : trapezoidal rule, Newmark dissipative schemes, HHT rule, and the Generalized-${\alpha}$ family. It was shown that, for large multi body systems, Newmark dissipative was the best election since, provided that the adequate parameters were chosen, excellent behavior was achieved in terms of efficiency and robustness with acceptable levels of accuracy. In the present paper, the performance of the described method in combination with another group of integrators, the Implicit Runge-Kutta family (IRK), is analyzed. The purpose is to clarify which kind of IRK algorithms can be more suitable for real-time applications, and to see whether they can be competitive with the already tested structural family of integrators. The final objective of the work is to provide some practical criteria for those interested in achieving real-time performance for large and complex multibody systems.

Estimate of Surface Ozone Concentration on Sunny Summer Days in Seoul Area by the Photochemical-Trajectory Model (광화학-궤적 모델에 의한 여름철 맑은 날 서울지방의 지상 오존 농도 추정)

  • 이시우;이광목
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.497-506
    • /
    • 2002
  • A Photochemical-Trajectory model was used to understand the production of ozone in the atmospheric boundary layer. This model was composed of the trajectory and the photochemical models. To calculate trajectories of air parcels, winds were obtained from the three-dimensional nonhydrostatic mesoscale model (PSU/NCAR MM5V2), and the results were interpolated into constant height surfaces. Numerical integration in the trajectory model was performed by the Runge-Kutta method. The photochemical model consisted of chemical reactions and photodissociation processes. Chemical equations were integrated by the semi-implicit Bulirsch-Stoer method. We performed our experiments from 21 July to 23 July 1994 during the summer time for Seoul area. During the time of maximum ozone concentration in Seoul, four trajectories of air parcels which traveled from Inchon to Seoul were selected. Ozone concentrations estimated by two models are compared with observed one in Seoul area and the photochemical-trajectory model is better fitted than pure photochemical model. During the selected period, high ozone concentrations in Seoul area were more influenced by transferred pollutants from Inchon than emitted pollutants in Seoul.

Fire Sensing Characteristics and Natural Convection in the Enclosure Partly Heated from Below (밑면이 부분 가열체를 갖는 정사각 밀폐공간내의 자연대류와 화재감지에 관한 연구)

  • 추병길
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.6-16
    • /
    • 1990
  • In this paper, the natural convection in a square enclosure, partly heated from below, with two adiabatic vertical wall and one upper horigental wall is studied nomerically. In numerical study, SIMPLE(Semi-Implicit for Pressure Linked Equation) algorithems are applied for the integration of momentum and energy equation. The grid size used in this study is the coordinates of size (22$\times$22). As a result of numerical analysis, the initial fluid flow depends on the thermal diffusion, but, as time passes, the fluid flow depends on convection and buoyancy of the enclosure. In Case 1, the heating region was been in the central position of the bottom wall. In case 2, the heating region was in the left position of the bottom. In case of Case 1, the lapse time of sensing the temperature of 72$^{\circ}C$ is approximately 15 sec almost at the same time in the coordinates (6, 22), (11, 22). In case of Case 2, the lapse time in the coordinates (6, 22), (11, 22) was 27 sec, 25 sec repectively. Also in case of Case 1 or Case 2, the gradients of y-position of the two sensors are transposed each other.

  • PDF

Experimental and Numerical Study on an Air-Stabilized Flexible Disk Rotating Close to a Rigid Rotating Disk (회전원판 근처에서 회전하는 유연디스크에 대한 실험 및 수치해석)

  • Gad, Abdelrasoul M.M.;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.19-35
    • /
    • 2009
  • The present work is an experimental and analytical study on a flexible disk rotating close to a rigid rotating disk in open air. In the analytical study, the air flow in the gap between the flexible disk and the rigid disk is modeled using Navier-Stokes and continuity equations while the flexible disk is modeled using the linear plate theory. The flow equations are discretized using the cell centered finite volume method (FVM) and solved numerically with semi-implicit pressure-linked equations (SIMPLE algorithm). The spatial terms in the disk equation are discretized using the finite difference method (FDM) and the time integration is performed using fourth-order Runge-Kutta method. An experimental test-rig is designed to investigate the dynamics of the flexible disk when rotating close to a co-rotating, a counter-rotating and a fixed rigid disk, which works as a stabilizer. The effects of rotational speed, initial gap height and inlet-hole radius on the flexible disk displacement and its vibration amplitude are investigated experimentally for the different types of stabilizer. Finally, the analytical and experimental results are compared.

  • PDF