• Title/Summary/Keyword: Sensor space

Search Result 1,312, Processing Time 0.029 seconds

DEVELOPMENT OF DAYTIME OBSERVATION MODEL FOR STAR SENSOR AND CENTROIDING PERFORMANCE ANALYSIS (주간 별 센서 관측 모델 개발 및 중심찾기 성능 분석)

  • Nah, Ja-Kyoung;Yi, Yu;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.273-282
    • /
    • 2005
  • A star sensor daytime observation model is developed in order to test the performance of the star sensor useful for daylight application. The centroid errors of the star sensor in the day time application are computed by using the model. The standard atmospheric model (LOWTRAN7) is utilized to calculate the physical quantities of the daylight atmospheric environments where the star sensor is immersed. This observation model takes the separation angles between the sun and star, the centroid algorithm and the various system specifications of the star sensor into the account. The developed star sensor model will provide more realistic measurement errors in estimating the performance of the attitude determination from the vector observations.

Simultaneous Faults Detection and Isolation Using Null Space Components of Faults for INS Sensor Redundancy

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.32.4-32
    • /
    • 2002
  • We consider inertial navigation system (INS) sensor redundancy and propose a method which uses singular value decomposition to detect and isolate faults when even two sensors have faults simultaneously. When redundant sensor configuration is given, such as symmetric configuration in INS, the range space and null space of configuration matrix are determined. We use null space of configuration matrix and define 21 reference fault vectors which include 6 one-fault vectors and 15 two-fault vectors. Measurements are projected into null space of measurement matrix and compared with 21 normalized reference fault vectors, which determines fault detection and isolation.

  • PDF

Development of Location Identification System for Moving Robot in the Sensor Space under KS Illumination Intensity Environment (국내 조명 환경에서 센서공간을 활용한 이동로봇의 위치인식시스템 개발)

  • Kang, Chul U.;Ko, Seok J.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • When a mobile robot performs in unknown environments, a location identification is an essential task. In this paper, we propose a location identification system that uses a sensor space without additional devices on the robot. Also the sensor space consists of a matrix of CDS sensor; when a robot was positioned on the CDS sensor, we can estimate the coordinate of the location by sensing a light. Based on KS illumination standard, experiments are performed in various environments. By evaluating the experimental results, we can show that the proposed system can be applicable to the location identification system of a moving robot.

Modeling of Indoor Geometry and Environment Sensor for Responsive Virtual URS Service (반응형 가상 URS 서비스를 위한 실내 기하구조 및 환경 센서 모델링)

  • Jeon, Kyeong-Won;Ki, Jeong-Seok;Kwon, Yong-Moo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.112-116
    • /
    • 2008
  • This paper presents URS (Ubiquitous Robotic Space) Modeling and service technique for the robotic security service while bridging between virtual space and physical space. First, this paper introduces a concept of virtual URS and responsive virtual URS. Second, this paper addresses modeling of URS which covers modeling of indoor geometry and environment sensor. Third, this paper describes virtual URS services including interactive virual-physical bridging service.

  • PDF

Dynamic Threads Stack Management Scheme for Sensor Operating Systems under Space-Constrained (공간 제약하의 센서 운영체제를 위한 동적 쓰레드 스택관리 기법)

  • Yi, Sang-Ho;Cho, Yoo-Kun;Hong, Ji-Man
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.11
    • /
    • pp.572-580
    • /
    • 2007
  • Wireless sensor networks are sensing, computing and communication infrastructures that allow us to monitor, instrument, observe, and respond to phenomena in the harsh environment. Generally, the wireless sensor networks are composed of many deployed sensor nodes that were designed to be very cost-efficient in terms of production cost. For example, UC Berkeley's MICA motes have only 8-bit CPU, 4KB RAM, and 128KB FLASH memory space. Therefore, sensor operating systems that run on the sensor nodes should be able to operate efficiently in terms of the resource management. In this paper, we present a dynamic threads stack management scheme for space-constrained and multi-threaded sensor operating systems. In this scheme, the necessary stack space of each function is measured on compile-time. Then, the information is used to dynamically allocate and release each function's stack space on run-time. It was implemented in Nano-Qplus sensor operating system. Our experimental results show that the proposed scheme outperforms the existing fixed-size stack allocation mechanism.

DEVELOPMENT OF ULTRA-LIGHT 2-AXES SUN SENSOR FOR SMALL SATELLITE

  • Kim, Su-Jeoung;Kim, Sun-Ok;Moon, Byoung-Young;Chang, Young-Keun;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2005
  • This paper addresses development of the ultra-light analog sun sensors for small satellite applications. The sun sensor is suitable for attitude determination for small satellite because of its small, light, low-cost, and low power consumption characteristics. The sun sensor is designed, manufactured and characteristic-tested with the target requirements of ${\pm}60^{\circ}$ FOV (Field of View) and pointing accuracy of ${\pm}2^{\circ}$. Since the sun sensor has nonlinear characteristics between output measurement voltage and incident angle of sunlight, a higher order calibration equation is required for error correction. The error was calculated by using a polynomial calibration equation that was computed by the least square method obtained from the measured voltages vs. angles characteristics. Finally, the accuracies of 1-axis and 2-axes sun sensors, which consist of 2 detectors, are compared.

The Evaluations of Sensor Models for Push-broom Satellite Sensor

  • Lee, Suk-Kun;Chang, Hoon
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The aim of this research is comparing the existing approximation models (e.g. Affine Transformation and Direct Linear Transformation) with Rational Function Model as a substitute of rigorous sensor model of linear array scanner, especially push-broom sensor. To do so, this research investigates the mathematical model of each approximation method. This is followed by the assessments of accuracy of transformation from object space to image space by using simulated data generated by collinearity equations which incorporate or depict the physical aspects of linear array sensor.

  • PDF

Posture and Space Recognition System Using Multimodal Sensors (다중모드 센서를 이용한 자세 및 공간인지 시스템)

  • Cha, Joo-Heon;Kim, Si Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.603-610
    • /
    • 2015
  • This paper presents a multimodal sensor system that can determine the location of house space by analyzing the postures and heights of the residents. It consists of two sensors: a tilt sensor and an altimeter sensor. The tilt sensor measures the static and dynamic postures of the residents, and the altimeter sensor measures their heights. The sensor system includes a Bluetooth transmitter, and the server receives the measured data and determines the location in the house. We describe the process determining the locations of the residents after analyzing their postures and behaviors from the measured data. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

Design of ToF-Stereo Fusion Sensor System for 3D Spatial Scanning (3차원 공간 스캔을 위한 ToF-Stereo 융합 센서 시스템 설계)

  • Yun Ju Lee;Sun Kook Yoo
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.134-141
    • /
    • 2023
  • In this paper, we propose a ToF-Stereo fusion sensor system for 3D space scanning that increases the recognition rate of 3D objects, guarantees object detection quality, and is robust to the environment. The ToF-Stereo sensor fusion system uses a method of fusing the sensing values of the ToF sensor and the Stereo RGB sensor, and even if one sensor does not operate, the other sensor can be used to continuously detect an object. Since the quality of the ToF sensor and the Stereo RGB sensor varies depending on the sensing distance, sensing resolution, light reflectivity, and illuminance, a module that can adjust the function of the sensor based on reliability estimation is placed. The ToF-Stereo sensor fusion system combines the sensing values of the ToF sensor and the Stereo RGB sensor, estimates the reliability, and adjusts the function of the sensor according to the reliability to fuse the two sensing values, thereby improving the quality of the 3D space scan.

Tactile feedback in tangible space

  • Yun, Seung-Kook;Kang, Sung-Chul;Yang, Gi-Hun;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1802-1807
    • /
    • 2005
  • Tangible interface can be understood as a newly defined concept, which can provide an effective and seamless interaction between the human as a subjective existence and the cyberspace as an objective existence. Tactile sensation is essential for many exploration and manipulation tasks in the tangible space. In this paper, we suggest the design of an integrated tactile sensor-display system that provides both of sensing and feedback with kinesthetic force, pressure distribution, vibration and slip/stretch. A new tactile sensor with PDVF strips and display system with bimorph actuators has been developed and integrated by developed signal processing algorithm. In the scenario of haptic navigation in the tangible space, tactile feedback system is successfully experimented.

  • PDF