• Title/Summary/Keyword: Sensor structure design

Search Result 540, Processing Time 0.032 seconds

Development of a Single-Joint Optical Torque Sensor with One Body Structure (일체형 구조를 갖는 1축 광학 토크 센서 개발)

  • Gu, Gwang-Min;Chang, Pyung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.218-222
    • /
    • 2011
  • This paper proposes a single-joint optical torque sensor with one body structure. Conventional optical torque sensors consist of three parts, two plates and an elastic structure. They have slightly slipping problem between plates and elastic structure due to the manufacturing tolerance. Since the order of measurement range of optical sensor is about ten micrometers, the slipping problem causes large measurement error, especially in the case of vibrational or high speed plant. This problem does not occur in the proposed design due to the one body structure. The proposed sensor has advantage of low cost, light weight, and small size. And it is easy to design and manufacture. Simulation works that analysis of stress and strain are performed accurately. To demonstrate the performance of proposed sensor, experiments were implemented to compare with a commercial force/torque sensor (ATI Mini45).

Optimal Design of Disk Shaped Piezoelectric Actuator and Sensor for Noise Control of Plate Structure (판 구조물의 소음 제어를 위한 압전가진기와 감지기의 최적 설계)

  • 김재환;고범진;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.266-271
    • /
    • 1996
  • Optimal design of disk shaped piezoelectric actuator and sensor mounted on the plate structure is studied for the control of noise radiated fro the structure. The sensor signal is returned to the actuator through negative gain. Finite element modelling is used for the plate structure and the disk shaped piezoelectric sensor and actuator. The objective function is the total radiated sound power and the design variables are the locations and sizes of the piezoelectric actuator and sensor. The optimal is performed at the resonance and the off resonance frequency and the results show good noise reduction.

  • PDF

Distributed Piezoelectric Sensor /Actuator Optimal Design for Active Vibration Control of Shell Structure (쉘 구조물의 진동제어를 위한 분포형 압전 감지기/작동기의 설계 최적화)

  • 황준석;목지원;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.154-157
    • /
    • 2000
  • Distributed piezoelectric sensor and actuator system has been designed for the active vibration control of shell structure. PVDF is used for the materials of sensor/actuator. To prevent the adverse effect of spillover, distributed modal sensor/actuator system is established. Although shell structure is three-dimensional structure, the PVDF sensor/actuator system can be treated as two-dimensional Finite element programs are developed to consider curved structures having PVDF modal sensor/actuator. The nine-node Mindlin shell element with five nodal degree of freedoms is used for finite element discretization. The electrode patterns and lamination angle of PVDF sensor/actuator are optimized to design the modal sensor/actuator system Genetic algorithm is used for optimization. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and second modes of singly curved cantilevered shell structure are designed using mentioned methods. Discrete LQG method is used as a control law. Experimental demonstrations of the active vibration control with designed sensor/actuator system have been performed successfully.

  • PDF

Vibration Control of Beam using Distributed PVDF Sensor and PZT Actuator (분포형 압전필름 감지기와 압전세라믹 작동기를 이용한 보의 진동 제어)

  • 유정규;박근영;김승조
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.967-974
    • /
    • 1997
  • Distributed piezoeletric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF have been used in this study, the former as an actuator and the latter as a sensor for the integrated structure. We have optimized the position and the size of the PZT actuator and the electrode shape of the PVDF sensor. Finite element method is used to model the structure and the optimized actuators, we have designed the active electrode width of the PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Model control forces for the residual (uncontrolled) modes have been minimized during the sensor design to minimize the observation spill-over. Genetic algorithm and sequential quadratic programming technique have been utilized as an optimization scheme. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Vibration Control of Beam using Distributed PVDF sensor and PZT actuator (분포형 압전 필름 감지기와 압전 세라믹 작동기를 이용한 보의 진동 제어)

  • 박근영;유정규;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.413-417
    • /
    • 1997
  • Distributed piezoelectric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF are used in this study, the former as an actuator and the latter as a sensor for our integrated structure. For the PZT actuator, the position and size have been optimized. Optimal electrode shape of the PVDF sensor has been determined. For multi-mode vibration control, we have used two PZT actuators and a PVDF sensor. Electrode shading of PVDF is more powerful for modal force adjustment than the sizing and positioning of PZT. Finite element method is used to model the structure that includes the PZT actuator and the PVDF sensor. By deciding on or off of each PZT segment, the length and the location of the PZT actuator are optimize. Considering both of the host structure and the optimized actuators, it is designed that the active electrode width of PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Sensor is designed to minimize the observation spill-over. Modal control forces for the residual(uncontrolled) modes have been minimized during the sensor design. Genetic algorithm, which is suitable for this kind of discrete problems, has been utilized for optimization. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Optical waveguide structure design of Non-dispersive Infrared (NDIR) CO2 gas sensor for high-sensitivity (이산화탄소 검출을 위한 고감도 비분산 적외선 가스센서의 광도파관 구조 설계)

  • Yoon, Jiyoung;Lee, Junyeop;Do, Namgon;Jung, Daewoon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.331-336
    • /
    • 2021
  • The Non-dispersive Infrared (NDIR) gas sensor has high selectivity, measurement reliability, and long lifespan. Thus, even though the NDIR gas sensor is expensive, it is still widely used for carbon dioxide (CO2) detection. In this study, to reduce the cost of the NDIR CO2 gas sensor, we proposed the new optical waveguide structure design based on ready-made gas pipes that can improve the sensitivity by increasing the initial light intensity. The new optical waveguide design is a structure in which a part of the optical waveguide filter is inclined to increase the transmittance of the filter, and a parabolic mirror is installed at the rear end of the filter to focus the infrared rays passing through the filter to the detector. In order to examine the output characteristics of the new optical waveguide structure design, optical simulation was performed for two types of IR-source. As a result, the new optical waveguide structure can improve the sensitivity of the NDIR CO2 gas sensor by making the infrared rays perpendicular to the filter, increasing the filter transmittance.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

Vibration Stability Analysis of Automotive Exhaust Sensor (자동차 배기계 센서 구성품의 진동 안정성 해석)

  • Park, Hyun Bum
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.44-47
    • /
    • 2017
  • This work dealt with vibration stability analysis of automotive exhaust sensor. In this work, structural design and analysis of exhaust gas sensor of automobile system were performed. Firstly, structural design requirement of automobile exhaust system was investigated. After structural design, the structural analysis of the exhaust measurement sensor system were performed usig the finite element analysis method. It was performed that the vibration and thermal stress analysis at the high temperature condition. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis, it was confirmed that the designed measurement sensor structure is safety.

Design an Indexing Structure System Based on Apache Hadoop in Wireless Sensor Network

  • Keo, Kongkea;Chung, Yeongjee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.45-48
    • /
    • 2013
  • In this paper, we proposed an Indexing Structure System (ISS) based on Apache Hadoop in Wireless Sensor Network (WSN). Nowadays sensors data continuously keep growing that need to control. Data constantly update in order to provide the newest information to users. While data keep growing, data retrieving and storing are face some challenges. So by using the ISS, we can maximize processing quality and minimize data retrieving time. In order to design ISS, Indexing Types have to be defined depend on each sensor type. After identifying, each sensor goes through the Indexing Structure Processing (ISP) in order to be indexed. After ISP, indexed data are streaming and storing in Hadoop Distributed File System (HDFS) across a number of separate machines. Indexed data are split and run by MapReduce tasks. Data are sorted and grouped depend on sensor data object categories. Thus, while users send the requests, all the queries will be filter from sensor data object and managing the task by MapReduce processing framework.

Combined Optimal Design with Minimum Phase System (최소위상시스템을 고려한 통합최적설계)

  • 박중현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.192-196
    • /
    • 2004
  • A combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only the minimum weight design problem for the structure, but also the suppression problem of the effect of disturbances for the control system as the purpose of the design. A numerical example shows the validity of combined optimal design of the structure and control systems. We also consider the validity of the sensor-actuator collocation for the control system design in this paper.