• Title/Summary/Keyword: Sensorless

Search Result 1,003, Processing Time 0.029 seconds

High-Performance Sensorless-Control of PMSM Using Back-EMF and Reactive Power (역기전력 및 무효전력에 의한 영구자석 동기전동기의 센서리스 속도제어 개선)

  • Lee, Guen-Bo;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.740-742
    • /
    • 2010
  • This paper investigates a high-performance strategy for speed sensorless control of a permanent magnet synchronous motor. Two speed sensorless controls using back-EMF and reactive power are analyzed in this paper, and these two speed estimations are appropriately applied according to the steady and transient states for a high-performance sensorless control. The proposed sensorless control algorithm has a better performance compared to the conventional control algorithms.

A Study on the Sensorless PMSM Control using the Superposition Theory

  • Lee, Young-Jin;Yoon, Young-Jin;Kim, Young-Ho;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.5-12
    • /
    • 2003
  • This study presents a solution to control a PMSM without sensors. The control method is the presented superposition principle. This method of sensorless theory is very simple to compute estimated angle. Therefore, computing time to estimate angle is shorter than other sensorless methods. The use of this system yields enhanced operations, fewer system components, lower system costs, efficient energy control system designs and increased efficiencies. A practical solution is described and its results are given in this study. The performance of a sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using the cheaper electrical sensorless motors. This paper deals with an overview of solutions in the sensorless PHSM control applications, whereby the focus will be the new sensorless controller and its applications.

Sensorless Transition Algorithm of PM Synchronous Motor by Load Torque Estimation (영구자석동기전동기의 부하추정을 통한 센서리스 전환 알고리즘)

  • Kim, Dong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.349-356
    • /
    • 2021
  • Permanent magnet synchronous motors are mainly used in the traction of electric vehicle and home application products including air-conditioners and refrigerators. For sensorless control without rotor position sensors, I-F control is applied for initial starting at low speeds, and mode is changed to sensorless control when the rotor speed is sufficiently accelerated for estimating rotor position. When the mode is changed to the sensorless control from the open-loop starting, the initial integral value of the speed controller should be considered by load condition; otherwise, the transition to sensorless control may fail. The sensorless transfer algorithm of PM synchronous motor based on load condition for smooth transition is proposed. The performance of the proposed sensorless transfer algorithm was verified by experiments.

Analysis and a Compensation Method for Torque Ripple caused by Position Error in Switched Reluctance Motor Position Sensorless Control (스위치드 릴럭턴스 전동기의 위치 센서리스 제어시 위치오차에 의해 발생하는 토크리플 해석과 그 보상 방법)

  • Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.806-807
    • /
    • 2011
  • This paper presents a new sensorless controller used with both the classical sliding mode observer(SMO) and the rate of current change in order to a reduced torque ripple for switched reluctance motor (SRM) sensorless drives. The new sensorless scheme consists of a sliding mode observer (SMO)-based position sensorless approach for high speeds along with a low-resolution discrete the rate of current change for low speeds and standstill. The new position estimation resets between the SMO and the low-resolution of current change according to the speed sign and the position error difference between the SMO and the low-resolution rate of current change. The simulation results show the robustness of this new high performance sensorless control approach with the hybrid sensorless control topology.

  • PDF

Excitation Scheme to Enhance Output Torque of Sensorless BLDC Motor to Drive the Flight Attitude Control Fins of a Guided Artillery Munition (유도형 탄약의 조정날개 구동용 Sensorless BLDC 전동기의 출력 토크 향상을 위한 여자 기법)

  • Lee, Tae-Hyung;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.9-13
    • /
    • 2015
  • In this paper, a new excitation scheme is developed to increase the output torque of the sensorless BLDC(Brushless DC) motor(BLDCM), which drives fins to control the flight attitude of a guided artillery munition. The proposed scheme is based on a 12-step excitation strategy combining two-phase and three-phase excitations. The proposed 12-step excitation scheme can produce more torque than a typical 6-step scheme for the start-up and synchronous operation in the sensorless BLDCM drive. The simulation and experimental results on the sensorless BLDCM drive system to control the fin were verified the validity of the proposed scheme.

  • PDF

Impoved Performance of Sensorless Induction Motor Drive in Low Speed Range Using Variable Link Voltage (가변 링크전압에 의한 센서리스 유도전동기의 저속운전 성능개선)

  • 김상균;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.90-98
    • /
    • 2004
  • Variable-speed drives are being continually innovated. Recently, sensorless induction motor drives have been much studied due to several advantages. Most sensorless algorithms are based on the mathematical modeling of motors, and all the information is obtained from the monitored voltages and currents. Therefore, the accuracy of such variables largely affects the performance of a sensorless induction motor drive. However, the output voltage of the SVPWM-VSI which is widely used in a sensorless induction motor drive has a considerable error, especially in a low speed range. This paper proposes a variation of the dc link voltage as a high-performance strategy for overcoming the above problem. The proposed strategy leads to an improved resolution of the output voltage of the SVPWM-VSI in a sensorless induction motor drive. Simulation and experiment have been performed for the verification of the proposed strategy.

Vector Control of Interior Permanent Magnet Synchronous Motor without Speed Sensor (속도센서 없는 매입형 영구자석 동기전동기의 벡터제어)

  • Choi, Jong-Woo;Lee, Seung-Hun;Kim, Heung-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1241-1249
    • /
    • 2007
  • Lately, many approaches of speed sensorless control method for Interior Permanent Magnet Synchronous Motor(IPMSM) ha, been developed. This paper proposes a novel sensorless algorithm for speed estimation of IPMSM. First of all, proposes sensorless method estimates flux of rotor using foundational voltage equation of IPMSM and then estimates position and speed of rotor using Phase Locked Loop(PLL). Proposed sensorless algorithm demonstrated through simulation using Matlab simulink and experiment.

Considerations on the Performance of Current Sensorless Control of a Synchronous Reluctance Motor (동기릴럭턴스전동기의 전류센서리스 제어 성능 고찰)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • Some works about the current sensorless control of a synchronous reluctance motor have been presented. However, there is no analysis about the performance and the detuning effect of the current sensorless control. This paper presents the problems and the detuning effect of the current sensorless control of a synchronous reluctance motor by simulation results. In addition, torque limiter is proposed to limit the torque current within the torque limit.

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

Design of a Luenberger Observer-based Current Sensorless Multi-loop Control for Boost Converters

  • Li, Xutao;Chen, Minjie;Shinohara, Hirofumi;Yoshihara, Tsutomu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • Multi-loop control of a boost converter needs a current-sensing circuit to detect the inductor current. Current sensorless multi-loop control reduces the cost, size and weight of the converter. The Luenberger observer (LO) is widely used to estimate the inductor current for current sensorless control of a switching converter. However, the design of the LO-based sensorless multi-loop control has not been well presented, so far. In this paper, a closed-loop characteristics evaluation method is proposed to design an LO-based current sensorless multi-loop control for boost converters. Simulations show evaluations of the closed-loop characteristics. Practical experiments on a digital processor confirm the simulations.