• 제목/요약/키워드: Separated nanoparticles

검색결과 24건 처리시간 0.022초

The Formation of Magnetite Nanoparticle in Ordered System of the Soybean Lecithin

  • Li, Tiefu;Deng, Yingjie;Song, Xiaoping;Jin, Zhixiong;Zhang, Ying
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.957-960
    • /
    • 2003
  • A method of preparation of magnetite nanoparticles in ordered systems, as in vesicle and microemulsion, consisting of soybean lecithin and water has been introduced. The size of magnetite grain was controlled by the content of soybean lecithin and size of liposomes in the systems. It was found by experiment that magnetite nanoparticles were formed inside the double layer vesicles. The magnetite nanoparticles were separated by magnetic separation and centrifugation and the dispersion of the magnetite nanoparticles prepared at 10% (w/w) soybean lecithin was particularly stable. The formation of pure magnetite nanoparticles was confirmed by analyses of XRD and electron diffraction pattern.

Investigation of Low-Cost, Simple Recycling Process of Waste Thermoelectric Modules Using Chemical Reduction

  • Kim, Woo-Byoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2167-2170
    • /
    • 2013
  • A low-cost and simple recycling process of waste thermoelectric modules has been investigated using chemical reduction methods. The recycling is separated by two processes, such as dissolving and reduction. When the waste thermoelectric chips are immersed into a high concentration of $HNO_3$ aqueous solution at $100^{\circ}C$, oxide powders, e.g., $TeO_2$ and $Sb_2O_3$, are precipitated in the $Bi^{3+}$ and $HTeO{_2}^+$ ions contained solution. By employing a reduction process with the ions contained solutions, $Bi_2Te_3$ nanoparticles are successfully synthesized. Due to high reduction potential of $HTeO{_2}^+$ to Te, Te elements are initially formed and subsequently $Bi_2Te_3$ nanoparticles are formed. The average particle size of $Bi_2Te_3$ was calculated to be 25 nm with homogeneous size distribution. On the other hand, when the precipitated powders reduced by hydrazine, $Sb_2O_3$ and Te nanoparticles are synthesized because of higher reduction potentials of $TeO_2$ to Te. After the washing step, the $Sb_2O_3$ are clearly removed, results in Te nanoparticles.

Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su;Park, In-Kyu;Nah, Jae-Woon;Toshihiro Akaike
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.2-8
    • /
    • 2003
  • The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

Sequence Coverage Enhancement Using Magnetic Nanoparticles in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Protein Analysis

  • Park, Eun-Hye;Song, Jin-Su;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.987-992
    • /
    • 2012
  • Magnetic nanoparticles (MNPs) treated with phosphoric acid were used to improve sequence coverage in protein identification by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Sample solution of tryptic peptides from proteins was mixed with the MNPs, and the MNPs were separated from the supernatant using a magnet. MALDI mass spectra obtained separately from the supernatant and the MNPs were distinctly different and complementary to each other. Combination of the two spectra led to a significantly increased sequence coverage.

Pt 기반 이원계 나노입자의 산소 및 일산화탄소 흡착 특성에 대한 전자밀도함수이론 연구 (Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles)

  • 안혜성;하현우;유미;최혁;김현유
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.365-369
    • /
    • 2018
  • We perform density functional theory calculations to study the CO and $O_2$ adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and $O_2$, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and $O_2$ binding energy values, which are required for facile CO oxidation. On the other hand, the $O_2$ binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than $O_2$. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Pt-based CO-tolerant CO oxidation catalyst.

액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성 (Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics)

  • 구혜영;윤중열;양상선;이혜문
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

양쪽성 가지형 공중합막을 이용한 다양한 모양의 은 나노입자 제조 (Preparation of Silver Nanoparticles with Various Morphology Using Amphiphilic Graft Copolymer Membranes)

  • 서진아;최진규;안성훈;연승현;김종학
    • 멤브레인
    • /
    • 제20권2호
    • /
    • pp.169-172
    • /
    • 2010
  • Poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) 가지형 공중합체를 합성한 후, 이를 이용하여 $80^{\circ}C$에서 열적으로 환원하여 은 나노입자를 제조하였다. 반응 시간을 바꿈에 따라 다양한 구조의 은 나노입자를 제조하는데 성공하였다. 1시간 정도의 짧은 반응 시간에서는 가지형 공중합체의 미세 상분리 구조를 크게 변화시키지 않고 5 nm 크기의 작은 은 나노입자가 생성되었다. 5시간 정도의 중간 반응 시간에서는 30 내지 50 nm 정도의 크기를 갖는 은 나노입자가 생성되었다. 18시간 정도의 긴 반응 시간에서는, 은입자가 뭉친 허리케인 모양의 은 집합체가 관찰되었다.

Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles

  • Choi, Soohoon;Chen, Ching-Lung;Johnston, Murray V.;Wang, Gen Suh;Huang, Chin-Pao
    • Membrane and Water Treatment
    • /
    • 제13권1호
    • /
    • pp.29-37
    • /
    • 2022
  • To verify the fate and transport of engineered nanoparticles (ENP), it is essential to understand its interactions with organic matter. Previous research has shown that dissolved organic matter (DOM) can increase particle stability through steric repulsion. However, the majority of the research has been focused on model organic matter such as humic or fulvic acids, lacking the understanding of organic matter found in field conditions. In the current study, organic matter was sampled from wastewater treatment plants to verify the stability of engineered nanoparticles (ENP) under field conditions. To understand how different types of organic matter may affect the fate of ENP, wastewater was sampled and separated based on their size; as small organic particular matter (SOPM) and large organic particular matter (LOPM), and dissolved organic matter (DOM). Each size fraction of organic matter was tested to verify their effects on nano-zinc oxide (nZnO) and nano-titanium oxide (nTiO2) stability. For DOM, critical coagulation concentration (CCC) experiments were conducted, while sorption experiments were conducted for organic particulates. Results showed that under field conditions, the surface charge of the particles did not influence the stability. On the contrary, surface charge of the particles influenced the amount of sorption onto particulate forms of organic matter. Results of the current research show how the size of organic matter influences the fate and transport of different ENPs under field conditions.

Bioconjugation of Poly(poly(ethylene glycol) methacrylate)-Coated Iron Oxide Magnetic Nanoparticles for Magnetic Capture of Target Proteins

  • Kang, Sung-Min;Choi, In-Sung S.;Lee, Kyung-Bok;Kim, Yong-Seong
    • Macromolecular Research
    • /
    • 제17권4호
    • /
    • pp.259-264
    • /
    • 2009
  • Chemical modification of magnetic nanoparticles(MNPs) with functional polymers has recently gained a great deal of attention because of the potential application of MNPs to in vivo and in vitro biotechnology. The potential use of MNPs as capturing agents and sensitive biosensors has been intensively investigated because MNPs exhibit good separation-capability and binding-specificity for biomolecules after suitable surface functionalization processes. In this work, we demonstrate an efficient method for the surface modification of MNPs, by combining surface-initiated polymerization and the subsequent conjugation of the biologically active molecules. The polymeric shells of non-biofouling poly(poly(ethylene glycol) methacrylate)(pPEGMA) were introduced onto the surface of MNPs by surface-initiated, atom transfer radical polymerization(SI-ATRP). With biotin as a model of biologically active compounds, the polymeric shells underwent successful post-functionalization via activation of the polymeric shells and bioconjugation of biotin. The resulting MNP hybrids showed a biospecific binding property for streptavidin and could be separated by magnet capture.

마그네타이트 나노입자를 포함한 탄소나노세공체 합성과 아이부프로펜 흡착거동 (Magnetite Nanoparticles Containing Nanoporous Carbon for the Adsorption of Ibuprofen)

  • 박성수;하창식
    • 접착 및 계면
    • /
    • 제14권2호
    • /
    • pp.82-87
    • /
    • 2013
  • 본 연구에서는 레졸, 질산철 그리고 트리블럭 공중합체를 이용하여 직접 탄화과정에 의해 자성체 나노입자가 분산된 탄소나노세공체를 합성하였다. 나노세공 마그네타이트/카본($Fe_3O_4$/carbon) 나노복합체는 낮은 마그네타이트 함량(1 wt%)을 가지고 잘 배열된 이차원적 육방체 구조(p6mm)를 보이며, 균일한 세공크기(3.6 nm), 높은 표면적(635 $m^2/g$)과 세공부피(0.48 $cm^3/g$)를 가진다. 작은 입자크기(10.2 nm)를 가지는 마그네타이트 나노입자는 초상자기성(7.7 emu/g)을 보이고 탄소 세공벽 내에 잘 분산되었다. 나노세공 마그네타이트/카본 물질은 최대 995 mg/g의 아이부프로펜 흡착량을 보였다. 또한, 자석을 이용하여 용액과 나노세공 마그네타이트/카본 물질의 분리가 용이하였다. 본 연구에서 제조된 나노복합체는 우수한 아이부프로펜 흡착제로 작용하였다.