• Title/Summary/Keyword: Series arc

Search Result 211, Processing Time 0.028 seconds

Analysis of Series Arc-Fault Signals Using Wavelet Transform (웨이블렛 변환을 이용한 직렬 아크고장 신호 분석)

  • Bang, Sun-Bae;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.494-500
    • /
    • 2008
  • This paper presents the analyzed result of the series arc fault current by using the discrete wavelet transform. The series arcing is caused by a loose connection in series with the load circuit. The series arc current is limited to a moderate value by the resistance of the device connected to the circuit, such as an appliance or a lighting system. The amount of energy in the sparks from the series arcing is less than in the case of parallel arcing but only a few amps are enough to be a fire hazard. Therefore, it is hard to detect the distinctive difference between a normal current and a intermittent arc current. This paper, presents the variation of the ratio of peak values and RMS values of the series arc fault current, and proposes the novel series arc fault detecting method by using the discrete wavelet transform. Loads such as a CFL lamp, a vacuum cleaner, a personal computer, and a television, which has the very similar normal current with the arc current, were selected to confirm the novel method.

Arc Detection Performance and Processing Speed Improvement of Discrete Wavelet Transform Algorithm for Photovoltaic Series Arc Fault Detector (태양광 직렬 아크 검출기의 검출 성능 및 DWT 알고리즘 연산 속도 개선)

  • Cho, Chan-Gi;Ahn, Jae-Beom;Lee, Jin-Han;Lee, Ki-Duk;Lee, Jin;Ryoo, Hong-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2021
  • This study proposes a DC series arc fault detector using a frequency analysis method called the discrete wavelet transform (DWT), in which the processing speed of the DWT algorithm is improved effectively. The processing time can be shortened because of the time characteristic of the DWT result. The performance of the developed DC series arc fault detector for a large photovoltaic system is verified with various DC series arc generation conditions. Successful DC series arc detection and improved calculation time were both demonstrated through the measured actual arc experimental result.

A Series Arc Fault Detection Strategy for Single-Phase Boost PFC Rectifiers

  • Cho, Younghoon;Lim, Jongung;Seo, Hyunuk;Bang, Sun-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1664-1672
    • /
    • 2015
  • This paper proposes a series arc fault detection algorithm which incorporates peak voltage and harmonic current detectors for single-phase boost power factor correction (PFC) rectifiers. The series arc fault model is also proposed to analyze the phenomenon of the arc fault and detection algorithm. For arc detection, the virtual dq transformation is utilized to detect the peak input voltage. In addition, multiple combinations of low- and high-pass filters are applied to extract the specific harmonic components which show the characteristics of the series arc fault conditions. The proposed model and the arc detection method are experimentally verified through a boost PFC rectifier prototype operating under the grid-tied condition with an artificial arc generator manufactured under the guidelines for the Underwriters Laboratories (UL) 1699 standard.

A Study of Detection Algorithms and Analysis Series Arc of Quasi-arc Load (유사아크부하의 직렬아크신호 분석 및 검출 알고리즘에 관한 연구)

  • Lim, Jong-Ung;Ju, Jae-Yeon;Kang, Kyoung-Pil;Bang, Sun-Bae;Choe, Gyu-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.81-90
    • /
    • 2014
  • This paper proposes new arc algorithm to detect series quasi-arc. This algorithm analyzes odd and even harmonics until 9th using discrete fourier transform (DFT) and detect series arc comparing RMS values of load current. Resistors, lights, dimmer and vacuum cleaner which can be distinguished linearity load and quasi arc load are adopted to perform experiments. This algorithm is confirmed to emulate arc detecting with measuring current data.

A Study on the Series Arc Detection in Low-voltage Wiring Systems (저압배선계통에서 직렬아크의 검출에 관한 연구)

  • Kim, Il-Kwon;Park, Dae-Won;Choi, Su-Yeon;Park, Chan-Yong;Kim, Hwang-Kuk;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.182-187
    • /
    • 2008
  • This paper dealt with the detection algorithm of series arcing, which is a cause of electric fires in low-voltage wiring systems. To find the distinguished electrical features of series arc, we simulated series arcing by the arc generator specified in UL1699. An electric heater, an inverter-controlled vacuum cleaner, and a phase-controlled incandescent lamp were used as loads to generate series arcing. A high-pass filter (HPF) with the low cut-off frequency of 3 kHz at -3 dB was fabricated and applied to separate the series arc signal from the AC voltage source. The experiment showed that the high frequency signal generates randomly during series arcing, and the phase-controlled incandescent lamp produces high frequency pulses even in normal state. In this case, the magnitude, the width, and the randomness of high frequency signal should be analyzed to estimate series arcing precisely.

Extraction of Series Arc Signals Based on Wavelet Transform in an Indoor Wiring System

  • Ji, Hong-Keun;Cho, Young-Jin;Wang, Guoming;Hwang, Seong-Cheol;Kil, Gyung-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.221-224
    • /
    • 2017
  • This paper dealt with the extraction of series arc signals based on wavelet transform in order to improve the accuracy of arc detection in indoor wiring systems. Three types of arc sources including a cord-cord, a terminal-cord, and an outlet-plug were fabricated to simulate typical arc defects. An arc generator fabricated according to UL 1699 was used to generate arcs. The optimal mother wavelet was selected as bior1.5 by calculating the correlation coefficients between the detected single current pulse and the wavelet. The detected arc current signals were then decomposed into eight levels using the discrete wavelet transform that implements the multi-resolution analysis method. By analyzing the decomposed components, the detail components D6, D7, and D8 were associated with arc signals, which were used for signal reconstruction. From the result, it was verified that the proposed method can be used for the extraction of the series arc signal from the AC mains, which is expected to be applied to further analysis of arc signals in indoor wiring systems.

Detection and Identification of the Series Arc in an Indoor Wiring System (옥내 배선계통에서 직렬 아크의 검출과 판별)

  • Kim, Woo-Hyun;Wang, Guoming;Kil, Gyung-Suk;Ji, Hong-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.412-416
    • /
    • 2018
  • Most series arcs lead to electrical fires that cannot be interrupted by circuit breakers, because the arc's current is outside the breaker's operating range. In this paper, experiments were conducted on the detection and identification of series arcs to prevent electrical fires. Plugs and outlets specified in KS C 8305 were deteriorated to replicate arc faults commonly found in fields. The characteristics of series arcs resulting from various types of loose connections were determined by analyzing the frequency spectra and phase distributions of detected arc pulses. The results showed that the simulated arc defects used in this study were more similar to actual arc phenomena than the existing arc generator specified in UL 1699. In addition, loose connections, such as wire-wire, terminal-wire, and outlet-plug, can be identified by phases of $0^{\circ}$, $180^{\circ}$ and $360^{\circ}$, respectively. These phases can be detected by a band pass filter with a frequency range of 5~10 MHz, which can be used as the trip signal for circuit breakers.

DWT-Based Parameter and Iteration Algorithm for Preventing Arc False Detection in PV DC Arc Fault Detector (태양광 직렬 아크 검출기의 오검출 방지를 위한 DWT 기반 파라미터 및 반복 알고리즘)

  • Ahn, Jae-Beom;Lee, Jin-Han;Lee, Jin;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.100-105
    • /
    • 2022
  • This paper applies the arc detection algorithm to prevent the false detection in photo voltaic series arc detection circuit, which is required not only to detect the series arc quickly, but also not falsely detect the arc for the non-arc noise. For this purpose, this study proposes a rapid and preventive false detection method of single peak noise and short noise signals. First, to prevent false detection by single peak noise, Discrete wavelet transform (DWT)-based characteristic parameters are applied to determine the shape and the amplitude of the noise. In addition, arc fault detection within a few milliseconds is performed with the DWT iterative algorithm to quickly prevent false detection for short noise signals, considering the continuity of serial arc noise. Thus, the method operates not only to detect series arc, but also to avoid false arc detection for peak and short noises. The proposed algorithm is applied to real-time serial arc detection circuit based on the TMS320F28335 DSP. The serial arc detection and peak noise filtering performances are verified in the built simulated arc test facility. Furthermore, the filtering performance of short noise generated through DC switch operation is confirmed.

Detection of Series Arc Signal in Low-voltage Systems (저압계통에서 직렬아크신호의 검출)

  • Ji, Hong-Keun;Park, Chan-Yong;Kil, Gyung-Suk;Kim, Il-Kwon;Cho, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.316-320
    • /
    • 2008
  • This paper described the design and fabrication of a series arc detection module to monitor electrical insulation in low-voltage system. The module consists of a passive high-pass filter with a low cut-off frequency of 3 kHz to attenuate power frequency voltage by 80 dB and an active band-pass filter with a frequency of 4 kHz to detect series arc signals only. For the application experiment, we simulated series arcing phenomena on various loads such as incandescent lamp controlled by dimmer and inverter fed induction motors by an arc generator specified in UL1699. From the experimental results, we could detect series arc signals without an influence of noises.

  • PDF

Frequency Spectrum Analysis of Series Arc and Corona Discharges (직렬 아크 및 코로나 방전의 주파수 스펙트럼 분석)

  • Kil, Gyung-Suk;Jung, Kwang-Seok;Park, Dae-Won;Kim, Sun-Jae;Han, Ju-Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.554-559
    • /
    • 2010
  • In this paper, we analyzed the frequency spectrum of radiated electromagnetic pulses generated by series arc- and corona- discharges as a basic study to develop an on-line diagnostic technique for power facilities installed inside closed-switchboards. To simulate series arc and corona discharges, five types of electrode system which consists of needle and plane electrodes were arranged. The experiment was carried out in an electromagnetic shielding room, and the measurement system consists of an ultra log antenna and an EMI receiver. From the experimental results, the frequency spectrum exists in ranges from 30 MHz to 2 GHz for a series arc discharge and 30 MHz to 1.2 GHz depending on defects for a corona discharge. The peak frequency of the series arc- and corona- discharges were 100 MHz to 160 MHz and 40 MHz to 80 MHz, respectively.