• Title/Summary/Keyword: Serratia plymuthica

Search Result 16, Processing Time 0.027 seconds

The Effect of the Colonization of Serratia plymuthica A21-4 in Rhizosphere Soil and Root of Pepper in Different Soil Environment (근권토양의 환경이 고추역병 억제 미생물 Serratia plymuthica A21-4의 고추뿌리와 근권 토양 정착에 미치는 영향)

  • Cao, Pu;Shen, Shun-Shan;Wen, Cai-Yi;Song, Shuang;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.101-105
    • /
    • 2009
  • The biocontrol agent Serratia plymuthica A21-4 was selected and proved as an excellent inhibitor of Phytophthora blight of pepper through in vitro and in vivo experiments in previous studies. To enhance the colonizing density of S. plymuthica A21-4 on plant root and rhizosphere soil, some soil conditions might effect on the colonization of the bacteria were examined. The results obtained from the study indicated that the soils containing more sand were favorable to root colonization of S. plymuthica A21-4. Organic amendment such as 3% maize straw(w/w) was helpful to colonize the bacteria in root and soil. The soil temperature about $20^{\circ}C$, water content around 40%, and soil pH near to neutral or slightly acidic, were optimum condition for the colonization of S. plymuthica A21-4 in the rhizosphere soil and roots of pepper. In addition, existence of indigenous biotic entities was beneficial to the colonization of S. plymuthica A21-4.

First Report of Bacterial Root Rot Caused by Serratia plymuthica on Panax ginseng (Serratia plymuthica에 의한 인삼 세균뿌리썩음병 발생)

  • Jung, Won Kwon;Kim, Young Soo;Choi, Jin Kook;Kim, Seung-Han;Jang, Myeong-Hwan;Kwon, Tae Lyong;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • In August of 2011, a wilting disease of ginseng was observed at Bongwha, Gyeongbuk province, Korea. Affected plants initially show withering symptoms on leaves of ginseng. As the disease progresses, withering leaves spread downward, eventually encompassing the whole plant. Leaves lose vigor but remain pale green. Symptoms of roots were brown, and soft rots characterized by moist and watery decay of the whole ginseng root, which initiated as small brown, water-soaked lesions of hairy roots and enlarged to the entire roots. The causal organism isolated from the infected roots was identified as Serratia plymuthica based on its physiological and biochemical characteristics, by cellular fatty acid composition (GC-FAME), the utilization of carbon sources (BioLog System), and 16S rRNA sequence of the isolated bacterium were 99% homologous to those of Serratia plymuthica strains. Artificial inoculation of the bacterium produced the same brown or soft rot symptoms on the ginseng roots, from which the same bacterium was isolated. This is the first report of bacterial root rot caused by the Serratia plymuthica in ginseng in Korea. Serratia plymuthica has been used as antagonistic microorganism for biological control on several crop plants. But it was proved pathogen of ginseng at humid condition in this study.

In vitro and In vivo Activities of a Biocontrol Agent, Serratia plymuthica A2l-4, Against Phytophthora capsici

  • Shen, Shun-Shan;Park, Ok-Hee;Lee, Sun-Mi;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.221-224
    • /
    • 2002
  • In vitro and in vivo activities of a biocontrol agent, Serratia plymuthica strain A2l-4, was evaluated for the control of Phytophthora blight of pepper, Strain A2l-4 inhibited mycelial growth, germination of zoosporangia and cystospores, and formation of zoospore and zoosporangia of Phytophthora capsici in vitro. In the pot experiment, incidence of Phytophthora blight of pepper in non-treated control was 100% at 14 days after inoculation, while no disease was observed in the plot treated with S. plymuthica A2l-4. In the greenhouse test, infection rate of pepper in the non-treated plots was 74.5%, while it was only 12.6% in the plots treated with A2l-4. Results indicate that S. plymuthica A2l-4 is a potential biocontrol agent for Phytophthora blight of pepper.

Serratia plymuthica Strain A2l-4: A Potential Biocontrol Agent Against Phytophthora Blight of Pepper

  • Shen, Shun-Shan;Kim, Jin-Woo;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.138-141
    • /
    • 2002
  • A promising biocontrol agent, A2l-4, against Phytophthora blight of pepper was selected from 351 bacterial isolates collected from rhizosphere soils and roots of onion (Allium fistulosum L.). The isolate A21-4 was identified as Serratia plymuthica based on its 16S rRNA sequence and key characteristics as compared with that of an authentic culture of S. plymuthica (ATCC No. 6109D01). The isolate readily colonized on roots of various crops including pepper when inoculated on seed and not. Strain A2l-4 showed narrow spectrum of antibiotic activity, as revealed in its strong inhibitory activity to the genera Pythium and Phytophthora, but not to Fuasrium and Rhizoctonia. In pot experiments, none of the pepper seedlings treated with A2l-4 were infected by Phytophthora capsici, while 86% of the control plants were killed by the pathogen.

Chitinase Production and Isolation of Serratia plymuthica AL-1 Antagonistic to White Rot Fungi from Allium fistulosum Roots. (대파 뿌리로부터 흑색썩음균핵병균에 길항하는 Serratia plymuthica AL-1의 분리 및 Chitinase의 생산)

  • 주길재;이익희;김진호
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2002
  • This study was carried out to isolate antagonistic bacterium against Sclerotium cepivorum causing Allium fistulosum white rot. Total of 146 strains were isolated from A. fistulosum roots. The isolates were screened for antagonism to S. cepivorum and the isolated strain No. AL-1 was selected among these bacteria. It was identified as Serratia plymuthica based on morphological and physiological characteristics according to the Bergey's mannual of systematic bacteriology and 16S rDNA sequences methods. Serratia plymuthica AL-1 showed broad spectrum of antifungal activities against plant pathogenic fungi Alternaria altrata, Colletotrichum gleosporioids, Phoma sp., Rhizoctonia solani, Sclerotinia sclerotiorum, Stemphylium solani, Fusarium oxysporium niveum but not inhibited Didymella bryoniae. When S. plymuthica AL-1 cultivated in the TSB medium containing 1% colloidal chitin, the high molecular fraction (>10 kDa) have chitinase activity (3.2 units/ml) and the low molecular fraction (<10 kDa) have not chitinase activity. Oppositely, after heat treatment (80℃ for 30 min) of the cultivation supernatant, the high molecular fractions have not antifungal activity but the low molecular fractions have antifungal activity.

Characterization of Antibiotic Substance Produced by Serratia plymuthica A21-4 and the Biological Control Activity against Pepper Phytophthora Blight

  • Shen, Shun-Shan;Piao, Feng-Zhi;Lee, Byong-Won;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.180-186
    • /
    • 2007
  • The biocontrol agent, Serratia plymuthica A21-4, has been developed for controlling pepper Phytophthora blight. Serratia plymuthica A21-4 strongly inhibits the mycelial growth, zoospore formation, and cyst germination of Phytophthora capsici in vitro. The application of a cell suspension of strain A21-4 to pepper plants in pot experiments and in greenhouse successfully controlled the disease. The bacteria produced a potent antifungal substance which was a key factor in the suppression of Phytophthora capsici. The most active chemical com-pound was isolated and purified by antifungal activity-guided fractionation. The chemical structure was identified as a chlorinated macrolide $(C_{23}H_{31}O_8Cl)$ by spectroscopic (UV, IR, MS, and NMR) data, and was named macrocyclic lactone A21-4. The active compound significantly inhibited the formation of zoosporangia and zoospore and germination of cyst of P. capsici at concentrations lower than $0.0625{\mu}g/ml$. The effective concentrations of the macrocyclic lactone A21-4 for $ED_{50}$ of mycelial growth inhibition were $0.25{\mu}g/ml,\;0.25{\mu}g/ml,\;0.30{\mu}g/ml \;and\;0.75{\mu}g/ml$ against P. capsici, Pythium ultimum, Sclerotinia sclerotiorum and Botrytis cinerea, respectively.

Growth Inhibition of Sclerotium Cepivorum Causing Allium White Rot by Serratia plymuthica Producing Chitinase (Serratia plymuthica AL-1이 생산하는 chitinase에 의한 대파 흑색썩음균핵병균의 생육억제)

  • 김진호;최용화;강상재;김영훈;주길재
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2003
  • An allium rhizobacterium Serratia plymuthica AL-1 was previously selected as a biocontrol agent of allium white rot. The chitinase from S. plymuthica AL-1 produced in medium containing colloidal chitin was purified by ammonium sulfate precipitation (40~70%), affinity adsorption, column chromatography on DEAE-sephadex A-50 and sephadex C-200 gel filtration. The enzyme was purified 10.8-fold with a yield of 7.3% from the starting culture broth. The purified chtinase gave a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis, it's molecular weight was estimated to be 55 kDa. The optimum pH and temperature of the purified enzyme were pH 5.5 and $55^{\circ}C$, respectively and it is stable up to $50^{\circ}C$ and maintains around 90% of its activity for 60min. The enzyme were activated by $Ca^{2+}$, $Mn^{2+}$ and $Mg^{2+}$ and inhibited by $Cu^{2+}$, SDS, $\rho$-CMB, MIA, respectively. The purified chitinase showed broad spectrum of antifungal activities against plant pathogenic fungi Sclerotium cepivoruin, Alternana alternnta, Colletotrichum glceosporioidrs, Phoma sp., Sclerotinia sclerotiorum, Stemphylium solani, Fusarium oxysporium f. sp. niveum but rarely inhibited Phytophthora capsici and Pythium ultimum.. The purified chitinase from S. plymuthica AL-1 caused swelling, lysis, deceleration and degradation of the hyphal tips of S. sczerotiorum causing allium white rot. It suggest that S. prymuthica AL-1 chitinase play an important part in the bifunctional chitinase / lysozyme activity.

Effect of Hydrogel on Survial of Serratia plymuthica A21-4 in Soils and Plant Disease Suppression

  • Shen, Shun-Shan;Kim, Won-Il;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.364-368
    • /
    • 2006
  • Survival of biocontrol agents and their effective colonization of rhizhosphere are the essential components for successful disease suppression. The effects of hydrogel supplement on bacterial survival and disease control were evaluated in pot and in the field. Addition of 2% hydrogel material to potting soil resulted in significant enhancement of colonization of biocontrol agent Serratia plymuthica A21-4 both in soil and rhizosphere of pepper plants. Rhizosphere colonization of S. plymuthica A21-4 retrieved from 40 days old pepper seedlings indicated 100 times higher bacterial population in hydrogel treated soil than in ordinary pot soil. The pepper plants sown in hydrogelated potting soil showed higher seed germination rate and the better growth of pepper plant than those in ordinary commercial pot soil. Although the suppression of Phytophthora capsid density in the potting soil by treatment of biocontrol agent A21-4 was not significantly different between in hydrogelated soil and ordinary potting soil, the suppression of Phytophthora blight between two treatments was significantly different. A21-4 treatment in hydrogelated potting soil was completely disease-free while same treatment in ordinary potting soil revealed 36% disease incidence. Our field study under natural disease occurrence also showed significantly less disease incidence(12.3%) in the A21-4 treatment in the hydrogelated soil compared to other treatments. Yield promotion of pepper by the A21-4 treatment in the hydrogelated potting soil was also recognized. Our results indicated that hydrogel amendment with biocontrol agent in pot soil would be a good alternative to protect pepper seedlings and increase plant yield.

Root Colonizing and Biocontrol Competency of Serratia plymuthica A21-4 against Phytophthora Blight of Pepper

  • Shen, Shun-Shan;Choi, Ok-Hee;Park, Sin-Hyo;Kim, Chang-Guk;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.64-67
    • /
    • 2005
  • The biocontrol agent Serratia plymuthica A21-4 readily colonized on the root of pepper plant and the bacterium moves to newly emerging roots continuously. The colonization of A21-4 on the pepper root was influenced by the presence ofPhytophthora capsici in the soil. When P. capsici was introduced in advance, the population density of A21-4 on the root of pepper plant was sustained more than $10^6$ cfu/g root until 3 weeks after transplanting. On the other hand, in the absence of P. capsici, the population density of A21-4 was reduced continuously and less than $10^5$ cfu/g root at 21 days after transplanting. S. plymuthica A21-4 inhibited successfully the P. capsici population in pepper root and rhizosphere soil. In the rhizosphere soil, the population density of P. capsici was not increased more than original inoculum density when A21-4 was treated, but it increased rapidly in non-treated control. Similarly, the population density of P. capsici sharply increased in the non-treated control, however the population of P. capsici in A21-4 treated plant was not increased in pepper roots. The incidence of Phytophthora blight on pepper treated with A21-4 was 12.6%, while that of non-treated pepper was 74.5% in GSNU experimental farm experiment. And in farmer's vinyl house experiment, the incidence of the disease treated with the fungicide was 27.3%, but treatment of A21-4 resulted in only 4.7% of the disease incidence, showing above 80% disease control efficacy.