• Title/Summary/Keyword: Sewer

Search Result 710, Processing Time 0.024 seconds

Comparison of infiltation rate for separate sewer system and combined sewer system in sewer maintenance areas (하수관로정비 지역의 분류식과 합류식 하수관로의 침입율 비교)

  • Gu, Gwangmo;Chu, Shaoxiong;Lim, Bongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.191-200
    • /
    • 2020
  • This study is to improve the efficiency of BTL (Build Transfer Lease) project operation by comparing the infiltration rate based on the data of 5 years of infiltration of the separate sewer system and combined sewer system. In the survey site, the separate sewer system area consists of eight flowmeters in seven treatment basins, and the combined sewer system area consists of eight flowmeters in five treatment basins. The infillration rate was analyzed by night-time domestic flow evaluation method, and the average infiltration rates of the separate sewer system and combined sewer system were 13% and 16%, respectively. Combined sewer system was about 1.3 times higher than the separate sewer system. The average BOD of separate sewer system was 233 mg/L, which was about 2.4 times higher than the combined sewer system was 107 mg/L. In the comparison of the average pipe diameter-length infiltration of separate sewer system and combined sewer system, the separate sewer system and the combined sewer system were about 0.150 ㎥/d/mm/km and about 0.109 ㎥/d/mm/km, respectively. The floating population in mixed residential and commercial areas has been identified as the cause. Therefore, we propose a method to calculate the infiltration rate in consideration of the margin ratio in the area where the night active population is concentrated.

Patterns on Sewer Transfer Flow for Rain Weather Period in the Area with Combined Sewer System for the Management of TMDLs (수질오염총량관리 합류식지역의 우기시 관거이송 변화유형)

  • Park, Jun Dae;Oh, Seung Young;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2010
  • Discharged pollution load is varied as rainfall changes in the area with combined sewer system. Changes in discharged pollution load are directly related with those of sewer transfer flow. Therefore, it is important to identify the pattern of sewer transfer flow for the analysis of changes in discharged pollution load. This study reviewed the type of distribution of sewer transfer flow for 17 sewage treatment plants and developed simple formular to estimate sewer transfer flow as rainfall changes. 11 facilities showed to have some relation with rainfall in the change of sewer transfer flow but 6 facilities to have no relation. Relationships between rainfall amount and sewer transfer flow showed that 6 facilities out of 11 had relatively strong relationships above R2=0.5, which were considered to be affected directly by rainfall changes. The formular which explain the relationship between rainfall and sewer transfer flow can be applied in the analysis of rainfall effects on discharged pollution load, therefore, the more appropriate evaluation will be done.

Development and Application of Sewer Facility Management System (하수도 시설 관리 시스템의 개발 및 적용)

  • Kim, Joon Hyun;Han, Young Han
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.279-285
    • /
    • 1999
  • An integrated sewer management system was developed for the analysis of sewer flow and for optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue in order to construct user-friendly management system. The developed system was applied to a residential area in Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of developed system, and the modeling of sewer flow was implemented using RUNOFF, EXTRAN, TRANSPORT in SWMM. This system is now in the process of connection to the management system of watershed and surface environment in order to develope an integrated environmental management system. Futhermore, this system will be a critical part of overall control system of sewer works including sewer line and wastewater treatment plant. As this system can provide comprehensive prediction of flow and pollution profiles, it could serve as a tool not only for optimal management, but also for decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF

Development of sewer condition assessment and rehabilitation decision-making program(SCARD) (하수관거 평가 및 정비 우선순위 의사결정도구 개발)

  • Han, Sangjong;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.123-131
    • /
    • 2015
  • A CCTV inspection method has been widely used to assess sewer condition and performance, but Korea lacks a proper decision support system for prioritizing sewer repair and rehabilitation (R&R). The objective of this paper is to introduce the results that we have developed in the Sewer Condition Assessment and Rehabilitation Decision-making (SCARD) Program using MS-EXCEL. The SCARD-Program is based on a standardized defect score for sewer structural and hydraulic assessment. Priorities are ranked based on risk scores, which are calculated by multiplying the sewer severity scores by the environmental impacts. This program is composed of three parts, which are decision-making for sewer condition and performance assessment, decision-making for sewer R&R priority assessment, and decision-making for optimal budget allocation. The SCARD-Program is useful for decision-makers, as it enables them to assess the sewer condition and to prioritize sewer R&R within the limited annual budget. In the future, this program logic will applied to the GIS-based sewer asset management system in local governments.

Comparison of Pollutant Control in Combined Sewer Overflows and Separated Sewer Overflows using the Separation Wall (우오수분리벽을 이용한 합류식 하수관거와 분류식 우수관거의 월류수 제어효과 비교)

  • Lim, Bong-Su;Kim, Do-Young;Lee, Kuang-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.458-466
    • /
    • 2007
  • This study is to evaluate control effects of separation wall by surveying water quality and sewer overflows during dry and wet periods in combined sewer and separated sewer systems. Ravine water from the combined Seokgyo outfall with the separation wall was separated about four times larger than sewage flow during dry periods. The water quality of the combined Seokgyo outfall with separation wall during dry periods is flow weighed average BOD 61 mg/L, the combined Cheonseokgyo outfall without the separation wall is average BOD 71 mg/L, and the separated Pyeongsong center outfall is average BOD 41 mg/L. The BOD concentration in separated outfall form about 57% of the combined outfall, and this means the separated outfall (i.e. storm sewer) is polluted by inflow of sewage. The overflow load of the separated outfall is ten times higher than the combined outfall and its overflow load per rainfall is three times than combined outfall during the wet periods. Therefore, the control plan of overflow load is required in storm sewer. The control effects of the overflow load increased 79% by setting the separation wall in the combined sewer, and showed 27% increase without the separation wall in separated sewer, but forecasted over 80% increase of effects if the separation wall was set.

Effect of separation walls on reduction of suspended solids loading in a combined sewer system (합류식 하수관거내 우오수분리벽 설치에 따른 부유물질 제어효과)

  • Kwon, Chungjin;Lim, Bongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.787-796
    • /
    • 2012
  • The purpose of this study is to investigate CSOs(combined sewer overflows) control in the combined sewer with/without separation wall. There is the high correlation between sewage velocity and suspended solid(SS) loading in the sewer without it. The SS/BOD ratio was about 3 times in the area with it, while it was about 5 times in the area without it. Therefore, the accumulated deposit within the sewer has influenced high SS loading in the sewer without it. This study showed that the separation wall installed acquired an acceptable efficiency in controlling the accumulated deposit in the combined sewer. According to this study, the BOD control effect was about 38 % in the sewer with the separation wall, whereas it showed about 24 % in the sewer without it. In this case, it was anticipated that the high pollutant control effect would be expected if the separation wall was installed in the combined sewer.

Hydraulic analysis of design alternatives to improve an industrial water distribution system (공업용수 배수관망시스템을 개선하기 위한 설계 대안의 수리해석)

  • Lim, Seong-Rin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • A CCTV inspection method has been widely used to assess sewer condition and performance, but Korea lacks a proper decision support system for prioritizing sewer repair and rehabilitation (R&R). The objective of this paper is to introduce the results that we have developed in the Sewer Condition Assessment and Rehabilitation Decision-making (SCARD) Program using MS-EXCEL. The SCARD-Program is based on a standardized defect score for sewer structural and hydraulic assessment. Priorities are ranked based on risk scores, which are calculated by multiplying the sewer severity scores by the environmental impacts. This program is composed of three parts, which are decision-making for sewer condition and performance assessment, decision-making for sewer R&R priority assessment, and decision-making for optimal budget allocation. The SCARD-Program is useful for decision-makers, as it enables them to assess the sewer condition and to prioritize sewer R&R within the limited annual budget. In the future, this program logic will applied to the GIS-based sewer asset management system in local governments.

Suggestion of the defect score and condition grading protocol about sewer pipe (하수관로 결함 점수 및 상태 등급 판정 방법 제안)

  • Kim, Jungruyl;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • This study was performed to propose the sewer defect scoring, and grading protocols for sewer condition assessment. For this, sewer defect scoring methods were comparatively analyzed and reviewed for four international condition assessment protocols, which are established based on WRc manual. As a result, we proposed a new protocol for sewer condition assessment, in which characteristics of sewer pipes are considered by segment. In reference to the PIM-3, the extent of ground subsidence was adopted to be of importance, and renewal scores increased in accordance with weighting of defects causing structural backfill materials. Also, defect grades of 'Hole' were extended to 5 levels of the grading, and 'Surface Damage' was excluded in defect assessment. The addition of 'Buckling' resulted in reduction of weights in 'Surface Damage' and 'Lining Defects'.

Optimization Model for Sewer Rehabilitation Using Fast Messy Genetic Algorithm (fmGA를 이용한 하수관거정비 최적화 모델)

  • Ryu, Jae-Na;Ki, Beom-Joon;Rark, Kyoc-Hong;Lee, Cha-Don
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • A long-term sewer rehabilitation project consuming an enormous budget needs to be conducted systematically using an optimization skill. The optimal budgeting and ordering of priority for sewer rehabilitation projects are very important with respect to the effectiveness of investment. In this study, the sewer rehabilitation optimization model using fast-messy genetic algorithm is developed to suggest a schedule for optimal sewer rehabilitation in a subcatchment area by modifying the existing GOOSER$^{(R)}$ model having been developed using simple genetic algorithm. The sewer rehabilitation optimization model using fast-messy genetic algorithm can improve the speed converging to the optimal solution relative to GOOSER$^{(R)}$, suggesting that it is more advantageous to the sewer rehabilitation in a larger-scale subcatchment area than GOOSER.

The Characteristics of Sediment and a Design Method for Preventing Sediment in the beginning Lateral Sewer (단말 오수관거 에서의 퇴적특성과 퇴적방지를 위한 설계법 고찰)

  • Hwang, Hwan Kook;Kim, Young Jin;Han, Sang Jong;Jung, Ho Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.789-797
    • /
    • 2009
  • The flow in the beginning lateral sewer can be characterized as intermittent and unsteady, and a moment maximum flow energy is required to transport fecal solids in the sewer. It is thus difficult to design to satisfy a minimum velocity criteria (0.6m/s), because of the substantially lower discharge in the beginning lateral sewer. This study is the result of a field survey, and aims to determine a design criteria for the minimum slope to prevent sediment in a lateral sewer. The survey performed on the two flat small catchments in Goyang-si consisting of D400mm hume-pipe, aimed to understand the manner in which the scope of a sewer slope has an effect on sediment in the beginning lateral sewer. The survey showed that the sewer slope below 3‰ had sedimentation of 88.7%, while the sewer slope of 3~6‰ had sedimentation of 47.8%. In addition, the minimum design slope was estimated to refer to the result of hydraulic experiments from Public Works Research Institute in Japan. Analysis showed that the D400mm hume pipe should be installed with a slope of 6.5‰ to prevent sediment in the beginning lateral sewer. For future installations, the study results showed that a D300mm plastic pipe requires a minimum slope of 3.5‰, and a D250mm plastic pipe requires a minimum slope of 3.3‰ in the beginning lateral sewer.