• Title/Summary/Keyword: Shadow graphy image technique

Search Result 2, Processing Time 0.018 seconds

Multi-phase Flow Velocity Measurement Technique using Shadow Graphic Images (다위상 유체 속도 계측을 위한 영상기법 적용)

  • Ryu, Yong-Uk;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.61-65
    • /
    • 2012
  • Air-water flow measurements are of importance for the coastal and ocean engineering fields. Although kinematic investigations of the multi-phase flows have been conducted for long time, velocity measurements still are concerned with many researchers and engineers in coastal and ocean areas. In the present study, an imaging technique using shadowgraphy and fiber optic probe for velocity measurements of air bubbles is introduced. The shadow graphy image technique is modified from the typical image velocimetry methods, and optical fibers are used for the well-known intrusive coupled phase-detection probe system. Since the imaging technique is a non-intrusive optical method from the air, it is usually applied for 2D flows. On the other hand, the double fiber optic probes touch flows regardless of flow patterns. The results of the flow measurements by both methods are compared and discussed. The methods are also applied to the measurements of overtopping flows by a breaking wave over the structure fixed on the free surface.

STUDY ON GREEN WATER BEHAVIOR ON RECTANGULAR SHAPED STRUCTURE (사각형 단면 구조물에 대한 그린워터의 생성 특성 연구)

  • Lee, K.N.;Jung, K.H.;Chae, Y.J.;Park, I.R.;Suh, S.B.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.96-102
    • /
    • 2015
  • In this study, the green water phenomena on rectangular shaped structure is numerically simulated by STAR-CCM+ to investigate the flow pattern including the velocity profiles in bubbly water flow. 5 phases of the formation of green water in front of and over the rectangular shaped structure is simulated at the design condition which is scaled down by 1:125 from FPSO operating in GOM. All numerical results are compared with the experimental results performed in a two dimensional wave flume. The water deformation due to the green water are obtained by the high speed CCD camera with employing the shadow graphy technique, which is allowed to take the bubbly water flow into images. A series of image taken by shadow graphy technique is analyzed with MQD method to calculate the velocity in bubbly water flow.