• Title/Summary/Keyword: Shake culture

Search Result 125, Processing Time 0.021 seconds

Production of Cellulase and Xylanase for Enzymatic Deinking of Old Newspaper (고지탈묵용 Cellulase 및 Xylanase 생산)

  • 김욱한;손광희;복성해;오세균
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.527-533
    • /
    • 1992
  • The optimal conditions for cellulase and xylanase production by Trichoderma reesei 28217 were studied for enzymatic deinking of old newspaper. The amounts of cellulase and xylanase from the strain was varied by initial medium pH, Tween 80, inoculum size of spore suspension, and carbon and nitrogen sources. The optimal conditions for cellulase production were pH 5.0-6.5, 0.02% of Tween 80, 0.5-1.0% of inoculum size of spore suspension ($1{\times}10^{7}$/ml). cottonseed meal as nitrogen source, and corn flour as carbon source. On the other hand, the optimal conditions for xylanase production were pH 6.5, 0.01% of Tween 80, corn steep liquor as nitrogen source, and disintegrated old newspaper as carbon source. The inoculum size for xylanase production was the same as for cellulase production. The concomitant production of cellulase and xylanase in shake flask culture was efficiently induced in the medium containing 0.5% cottonseed meal as nitrogen source and 1.0% old newspaper and 2.0% corn flour as carbon sources. In this case the activities of cellulase and xylanase produced were 6.11-7.22 IU/mJ and 97.7 IU/ml. respectively. However, the cellulase production in $5{\ell}$ fermentor scale was slightly decreased compared with that in flask scale. Moreover, xylanase production was severely reduced in a fermentor scale. The study for the reason of decreased enzyme production in fermentor is further needed.

  • PDF

Characterization of Bacillus licheniformis KJ-9 Isolated from Soil (토양으로부터 분리한 Bacillus licheniformis KJ 9의 특성)

  • Seo, Dong-Cheol;Ko, Jeong-Ae;Gal, Sang-Won;Lee, Sang-Won
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.403-410
    • /
    • 2010
  • In order to produce high-quality fermenting composts, a microorganism was isolated from the natural world. The bacterium has not only in high enzyme activities but also had good antimicrobial activities against phytopathogenic microorganisms. Its cultivating characteristics were then investigated. Bacterium KJ-9, which contains high CMCase, protease and chitinase activities and excellent antimicrobial activities against phytopathogenic microorganisms, was separated from leaf mold and identified as Bacillus licheniformis by two methods: Bergey's Manual of Systematic Bacteriology and API 50 CHL Carbohydrate Test Kit (Bio Merieux, France) using an ATB (Automated Identification) computer system (Bio Merieux, France). Optimal medium for cultivation of B. licheniformis was 2% soluble starch as a carbon source, 0.5% yeast extract as a nitrogen source and 0.05% $MgSO_4{\cdot}7H_2O$. Optimal growth conditions of pH, temperature and shake speed were pH 7.0, $50^{\circ}C$ and 180 rpm, respectively. Culture broth of B. licheniformis KJ-9 cultured for 36~60 hr was effective in fungicidal activities against plant pathogens including Botrytis cinerea, Corynespora cassicola, Fusarium oxysporum, and Rhizoctonia solani.

Development of Osmotolerant Mutant, Candida magnoliae M26 and the Determination of the Optimum Concentrations of Carbon and Nitrogen Sources to Improve Erythritol Yield (에리스리톨의 수율 향상을 위한 Candida magnoliae의 삼투압 내성 변이균주의 개발과 탄소원 및 질소원의 최적 농도 결정)

  • 양성욱;서진호;유연우
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.566-572
    • /
    • 2000
  • Experimental studies were carried out to develop an osmotolerant mutant of Candida magnoliae JH and to determine the optimum concentrations of carbon and nitrogen sources to improve erythritol yield and productivity. Mutants of C. magnoliae JH were prepared by treatment with ethylmethane sulfonate, and osmotolerant mutants were isolated from the agar plate colonies containing 2.5 M KCI. Among the mutants isolated, one mutant M26 was finally selected based on erythritol yield and productivity. In shake flask culture, glucose proved to be the best carbon source and the optimum yeast extract concentration was 5 g/L based on 100 g/L glucose. The erythritol yield and productivity of mutant M26 were greater than wild type in 100 g/L glucose medium. in the fermentation experiments, erythritol production increased with increased glucose concentration, up to a limit of 250 g/L. The maximum concentration of erythritol achieved 127.5 g/L, and the yield and productivity of erythritol production were 51.0% and 0.63 g/L-h, respectively.

  • PDF

Production of Poly-3-hydroxybutyrate from Xylose by Bacillus megaterium J-65 (Bacillus megaterium J-65에 의한 xylose로부터 poly-3-hydroxybutyrate 생산)

  • Jun, Hong-Ki;Jin, Young-Hi;Kim, Hae-Nam;Kim, Yun-Tae;Kim, Sam-Woong;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1625-1630
    • /
    • 2008
  • A microorganism capable of producing high level of poly-3-hydoxybutyrate (PHB) from xylose was isolated from soil. The isolated strain J-65 was identified as Bacillus megaterium based on the morphological, biochemical and molecular biological characteristics. The optimum temperature and pH for the growth of B. megaterium J-65 were $37^{\circ}C$ and 8.0, respectively. The optimum medium composition for the cell growth was 2% xylose, 0.25% $(NH_4)_2SO_4$, 0.3% $Na_2HPO_4{\cdot}12H_2O$, and 0.1% $KH_2PO_4$. The optimum condition for PHB accumulation was same to the optimum condition for cell growth. Copolymer of ${\beta}$-hydroxybutyric and ${\beta}$-hydroxyvaleric acid was produced when propionic acid was added to shake flasks containing 20 g/l of xylose. Fermenter culture was carried out to produce the high concentration of PHB. In batch culture, cell mass was 9.82 g/l and PHB content was 35% of dry cell weight. PHB produced by B. megaterium J-65 was identified as homopolymer of 3-hydoxybutyric acid by GC and NMR.

Studies on the Production of Intra- and Extra-cellular Lipids by the Strains in the Genus RHODOTORULA (Rhodotorula 속(屬) 균주(菌株)에 의(依)한 세포(細胞) 내외(內外) 지질생산(脂質生産)에 관(關)한 연구(硏究))

  • Park, Sung-Oh
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.93-116
    • /
    • 1974
  • A potent intracellular-lipid-producing yeast, Rhodotorula glutinis var. glutinis SW-17, was screened out from a variety of arable soils, compost heaps, and fodders, and two strains of excellent extracellular-lipid-producing yeasts, Rhodotorula glutinis var. glutinis SW-5 and Rhodotorula graminis SW-54, were screened out from the surface of many species of leaves. And then the intra- and extra-cellular lipid productions by those Rhodotorula yeasts were studied. The results were as follows: 1. During the shaking culture of 8 days at $24^{\circ}C$, both the intra- and extra-cellular lipid accumulation started almost at the stationary phase of growth, when the nitrogen source in the medium was a little more than half used up. The intracellular lipid production by Rhodotorula glutinis var. glutinis SW-17 reached 58.42% (w/w) of dried yeast, and the extracellular lipid production by Rhodotorula graminis SW-54 amounted to 2.62g per liter of the medium. 2. After the carbon and nitrogen sources in the medium were almost consumed, if the yeasts were shake-cultured further in a state of starvation, the yeast cells re-utilized the already produced intra- and extra-cellular lipids and the lipids completely disappeared in the medium in about 90 days. 3. The relative concentration of carbon and nitrogen sources in the media greatly influenced both the intra- and extra-cellular lipid production. When the nitrogen source in the medium was almost used up for the growth of yeast, and excess carbon sources were still available, the lipid production vigorously proceeded. As long as the nitrogen source concentration in the medium was high, the lipid production was greatly suppressed. 4. The optimum pH for both the intra- and extra-cellular lipid production by those yeasts was pH 5.0-6.0. 5. The fatty acid components of the intracellular lipid of Rhodotorula glutinis var. glutinis SW-17 were myristic, palmitic, palmitoleic, stearic, oleic, linoleic, and linolenic acids. The largest components of the fatty acids were palmitic acid equivalent to 30-45% of the whole fatty acids and oleic acid equivalent to 35-50%. 6. The fatty acid components of the extracellular lipid of Rhodotorula glutinis var. glutinis SW-5 and Rhodotorula graminis SW-54 were myristic, palmitic, stearic, oleic, linoleic, linolenic, 3-D-hydroxypalmitic, and 3-D-hydroxystearic acids. The largest components of the fatty acids were 3-D-hydroxypalmitic acid equivalent to 22-25% of the acids and 3-D-hydroxystearic acid equivalent to 13-17%. 7. The polyol component of the intracellular lipids was only glycerol, whereas the polyols of extracellular lipids were glycerol, mannitol, xylitol and arabitol.

  • PDF