• Title/Summary/Keyword: Shape Recognition

Search Result 850, Processing Time 0.033 seconds

Fast Shape Matching Algorithm Based on the Improved Douglas-Peucker Algorithm (개량 Douglas-Peucker 알고리즘 기반 고속 Shape Matching 알고리즘)

  • Sim, Myoung-Sup;Kwak, Ju-Hyun;Lee, Chang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.497-502
    • /
    • 2016
  • Shape Contexts Recognition(SCR) is a technology recognizing shapes such as figures and objects, greatly supporting technologies such as character recognition, motion recognition, facial recognition, and situational recognition. However, generally SCR makes histograms for all contours and maps the extracted contours one to one to compare Shape A and B, which leads to slow progress speed. Thus, this paper has made simple yet more effective algorithm with optimized contour, finding the outlines according to shape figures and using the improved Douglas-Peucker algorithm and Harris corner detector. With this improved method, progress speed is recognized as faster.

Shape Recognition and Classification Based on Poisson Equation- Fourier-Mellin Moment Descriptor

  • Zou, Jian-Cheng;Ke, Nan-Nan;Lu, Yan
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, we present a new shape descriptor, which is named Poisson equation-Fourier-Mellin moment Descriptor. We solve the Poisson equation in the shape area, and use the solution to get feature function, which are then integrated using Fourier-Mellin moment to represent the shape. This method develops the Poisson equation-geometric moment Descriptor proposed by Lena Gorelick, and keeps both advantages of Poisson equation-geometric moment and Fourier-Mellin moment. It is proved better than Poisson equation-geometric moment Descriptor in shape recognition and classification experiments.

Performance analysis of shape recognition in Senzimir mill control systems (젠지미어 압연기 제어시스템에서 형상인식에 관한 성능분석)

  • Lee, M.H.;Shin, J.M.;Han, S.I.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.83-90
    • /
    • 2011
  • In general, 20-high Sendzimir mills(ZRM) use small diameter work rolls to provide massive rolling force. Because of small diameter of work rolls, steel strip has a complex shape mixed with quarter, edge and center waves. Especially when the shape of the strip is controlled automatically, the actuator saturation occurs. These problems affect the productivity and quality of products. In this paper, the problems in automatic shape control of ZRM were analyzed. In order to evaluate the problems for the automatic shape control in ZRM, recognition performance was analyzed by comparing the measured shape and the recognized shape. The actuator positions by the shape recognition and the manual operation were compared. From the analysis results, the necessity of the improvement of recognition performance in ZRM is suggested.

Mobile Palmprint Segmentation Based on Improved Active Shape Model

  • Gao, Fumeng;Cao, Kuishun;Leng, Lu;Yuan, Yue
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.221-228
    • /
    • 2018
  • Skin-color information is not sufficient for palmprint segmentation in complex scenes, including mobile environments. Traditional active shape model (ASM) combines gray information and shape information, but its performance is not good in complex scenes. An improved ASM method is developed for palmprint segmentation, in which Perux method normalizes the shape of the palm. Then the shape model of the palm is calculated with principal component analysis. Finally, the color likelihood degree is used to replace the gray information for target fitting. The improved ASM method reduces the complexity, while improves the accuracy and robustness.

Two-Dimensional Partial Shape Recognition Using Interrelation Vector (상호관계 벡터를 이용한 이차원의 가려진 물체인식)

  • ;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.108-118
    • /
    • 1994
  • By using a concept of interrelation vector between line segments a new algorithm for partial shape recognition of two-dimensional objects is introduced. The interrelation vector which is invariant under translation rotation and scaling of a pair of line segments is used as a feature information for polygonal shape recognition. Several useful properties of the interrelation vector are also derived in relation to efficient partial shape recognition. The proposed algorithm requires only small space of storage and is shown to be computationally simple and efficient.

  • PDF

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Gesture Recognition using MHI Shape Information (MHI의 형태 정보를 이용한 동작 인식)

  • Kim, Sang-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

Shape Image Recognition by Using Histogram-based Correlation (히스토그램 기반 상관성을 이용한 모양영상 인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.548-553
    • /
    • 2010
  • This paper presents an effective shape image recognition method using the correlation based on 4-dimensional histogram. The histogram-based correlation is accurately applied to express the similarity by comparing the positions of a corresponding dimension between the images, which is calculated by considering 4 directions of the shape image. The correlation measure by using the normalized cross-correlation is also applied to obtain the robust recognition to the geometrical variations such as shape, position, size, and rotation. The proposed method has been applied to the problem for recognizing the 8 shape images of 64*64 pixels and the 30 shape images of 256*256 pixels. The experimental results show that the proposed method has a superior recognition performance that appears the image characters well.

Facial Shape Recognition Using Self Organized Feature Map(SOFM)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.104-112
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation forthe identification of a face shape. The proposed algorithm uses face shape asinput information in a single camera environment and divides only face area through preprocessing process. However, it is not easy to accurately recognize the face area that is sensitive to lighting changes and has a large degree of freedom, and the error range is large. In this paper, we separated the background and face area using the brightness difference of the two images to increase the recognition rate. The brightness difference between the two images means the difference between the images taken under the bright light and the images taken under the dark light. After separating only the face region, the face shape is recognized by using the self-organization feature map (SOFM) algorithm. SOFM first selects the first top neuron through the learning process. Second, the highest neuron is renewed by competing again between the highest neuron and neighboring neurons through the competition process. Third, the final top neuron is selected by repeating the learning process and the competition process. In addition, the competition will go through a three-step learning process to ensure that the top neurons are updated well among neurons. By using these SOFM neural network algorithms, we intend to implement a stable and robust real-time face shape recognition system in face shape recognition.

Shape recognition using Least-Square Method and compensation method

  • Hur, Yone-Gi;Lee, Dae-Kun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.179.6-179
    • /
    • 2001
  • This paper proposes the recognition method of the strip shape using the Least-Square method and the distinction method of the asymmetric shape and the compensation method upon the shape control values for the stainless steel cold rolling mill. This paper proposes the shape recognition method before control and the compensation method to minimize the fluctuation of the shape deviation and to get symmetric shape. This paper shows on line test results to verify the performance of the control method for the process. The experiments have been performed with respect to various material type, thickness, and strip width. The performance of the proposed method is obtained excellent quality and high productivity as results.

  • PDF