• 제목/요약/키워드: Shape of textile electrode

검색결과 4건 처리시간 0.016초

직물 전극의 형상 특성이 자계 유도성 전도율 기반의 비접촉식 심장활동 센싱에 미치는 효과의 분석 (An Analysis on the Effect of the Shape Features of the Textile Electrode on the Non-contact Type of Sensing of Cardiac Activity Based on the Magnetic-induced Conductivity Priciple)

  • 지선옥;이영재;구혜란;강선아;박희정;김경섭;이주현;이정환
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.803-810
    • /
    • 2013
  • The purpose of this research is to analyze the effect of shape of the inductive textile electrode on the non-contact heart activity sensing, based on the magnetic-induced conductivity principle. Four types of the inductive textile electrodes were determined according to the combinations of the two shape features. A fiber-metal hybrid-typed conductive thread was developed and applied to materialization of the textile electrodes by embroidery method. The heart activity was extracted through the textile electrode sewn on a T-shirt. The experiments were implemented to constantly measure the heart activity for 20 seconds, in each case of 5 healthy male subjects. The heart activity signals acquired in each type of the inductive textile electrode were analyzed, 1)by drawing a comparison of morphology with those of ECG signal (LeadII), and 2)by calculation of the normalized mean and standard deviation of magnitude of the heart activity signals. The analysis resulted that the relatively better quality of signals were acquired in the 'square' types in the matter of whole shape, while the better results were obtained in 'donut' types in the matter of center hole. Accordingly, the relatively best quality of signals was obtained in the case of 'Square-Donut' type of the inductive textile electrode.

심장 전기활동 계측을 위한 소형 섬유전극 개발 및 특성 고찰 (Development of Miniaturized Textile Electrode for Measuring Heart Electric Activity)

  • 이영재;이정환;양희경;이주현;강다혜;조현승;안인석
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1186-1193
    • /
    • 2009
  • Wearable ECG monitoring is regarded as one of the most essential part in the ubiquitous healthcare environment and subsequently day-life monitoring of a heart condition has been pursued especially for the elder people. However, there are many problems to accomplish this task such as; i) implementation of long-term monitoring device, ii) development of non-irritating electrode on skin and iii) stable signal acquisition. With these aims, we have focused on implementing a non-irritating electrode with an endurable monitoring device for day-life. To accomplish our tasks, we basically developed four different types of textile electrodes that are adapted by both shape and the composed material; flat or convex shape and Ag-conductive paste material or not. It turns out to be that a convex shape and Ag-paste textile electrode has the best performance in terms of both signal-to-noise ratio (SNR) and Impedance/Phase characteristics. Furthermore, ECG amplifier (35 ${\times}$ 35 mm) has developed to resolve the ECG signal and transfer the signal to desktop computing device or portable one by RF serial communication.

생체 신호 측정을 위한 섬유전극의 형태에 따른 전기적 특성 분석 및 비교 (Analysis and comparison of textile electrode's electrical characteristics in several shapes for biopotential signals)

  • 이영재;이강휘;이정환;강다혜;조하경;조현승;이주현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.371-372
    • /
    • 2008
  • Many kinds of electrodes have been developed in various forms and shapes for measurement of bio potential signal. Textile electrode has benefit of collect long tenn data monitoring because of it is non-consciousness, convenient and do not occur skin irritation. However, It is very difficult to acquire available data due to high impedance of electrode and unstable skin-electrode contact which generate motion artifact. Also snap button which usually used as mediator between textile and measurement device cause change of electrical characteristics. In this paper, we inflated textile electrode to stabilize contact and add conductive silver paste between textile and snap button to improve conductance. To compare the performance of two methods, flat or inflated and add conductive paste or not, four types of electrodes are tested on each impedance and SNR by ECG measurement. In result, the first type electrode which flat and non-conductive paste showed the worst performance and the last type electrode which is inflated shape and contain conductive paste show the best performance.

  • PDF

심박 모니터링을 위한 전도성 소재의 전도성 및 물성 비교 연구 (A Comparative Study on the Conductivity and Physical Properties of Conductive Materials for Heart Rate Monitoring)

  • 김지민;김종준
    • 패션비즈니스
    • /
    • 제22권4호
    • /
    • pp.118-129
    • /
    • 2018
  • The purpose of this study is to develop ECG electrode materials for the heart rate monitoring smart band, a smart device used for ECG and heart rate measurement. The purpose of the evaluation is to assess properties and conductivity of electrodes of the existing heart rate monitoring smart band, and to determine suitability through a representative conductive sample. Because level of thickness does not differ significantly from value of conductive specimen from thickness of the smart band, it can be used as a conductive electrode. Surface conductivity of conductive samples and smart bands, is expected to be available as electrodes except for conductive film. Also, since the knit have conductivity only in the metal processing layer, it is necessary to use electrodes on the part of the metal processing layer that is conductive when applying the knit. Tensile strength and electrical conductivity of the tensile were generally revealed to have a tendency. Thickness of the specimen that can be used as an electrode for the smart band is suitable for all samples, electrical resistance, conductive woven, conductive knit, and conductive cord. In the case of conductive cord, however, the electrode attached to the human body will not conform to the flat shape of the electrode attached to the human body. Therefore, the conductive woven and the conductive knit will be available as an electrode.