• Title/Summary/Keyword: Shear key

Search Result 570, Processing Time 0.028 seconds

Experimental and Analytical Evaluation of Seismic Performance of Shear-Resistance Key (전단저항키 실험 및 내진성능평가)

  • 박종철;강형택;박찬민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.523-528
    • /
    • 2000
  • In multi-span bridges, a shear key is often used to distribute the seismic force to the case, the shear key is sometimes required to be reinforced to withstand the seismic force. To improve the strength of shear key, the strength and failure mode of shear key have to be carefully estimated and the proper reinforcement scheme should be elaborated. The test results show that the strength of shear key is 2.5 times higher than the strength calculated by PCI design handbook. Also the strength of shear key is greatly improved by placing PT bars into shear key. In this study, the analytical method to evaluate the strength of sheat key and the reinforcement scheme are proposed.

  • PDF

Study on the Shear Key-shaped Mold making Method utilizing 3D Printers (3D 프린터를 활용한 전단키 형상 몰드 제작 방법에 관한 연구)

  • Jang, Jong-Min;Jang, Hyeon-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.5-6
    • /
    • 2016
  • Due to the construction of high-rise and long axis etc, UHPC(Ultra High Performance Concrete) has attracted attention as a material that will replace the existing concrete. In order to improve the structural performance of each member joints, after demolding the concrete, method for surface treatment of the contact surface or by modifying the mold to create a shear key will be applied. In this study, to improve the conventional shear key manufacturing process, utilizing a 3d printer to produce a shear key plate. 3D printers have advantage it is inexpensively manufactured as compared with other production methods. Therefore, this study utilizes a 3D printer, we propose the shear key-shaped mold and plate shear key production measures.

  • PDF

Experimental Evaluation on Structural Analysis of the Shear Key between Concrete-PE Modules (콘크리트-PE 부유체 모듈의 케이싱형 전단키 구조성능 실험평가)

  • Jeongsoo Kim;Yeon-Ju Jeong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.545-553
    • /
    • 2023
  • Purpose: This study proposes a casing type of shear key to connect with floating breakwater modules composed of concrete and PE(Poly Ethylene), and evaluates the structural performance of the shear key. Method: According to Eurocode, extreme load tests of shear keys with several cross-sections were conducted. Result: The maximum shear resistance of the casing type is 1.5 times than those of the plain concrete type, and the use of the casing shear key leads to ductile behaviors after its peak shear resistance than the shear key made of reinforced concrete. Conclusion: The use of the proposed casing type of shear key will contributes to improve the safety of the shear connection between modular structures.

An experimental study for shear loading capacity of segmental members depending on various types of shear connector (전단연결부 형상에 따른 분절부재의 전단내하력에 대한 실험적 연구)

  • Han, Man-Yup;Kang, Tae-Heon;Shin, Jae-Woo;Jin, Kyung-Suk;Kang, Sang-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.158-161
    • /
    • 2006
  • The numerical analysis and the experiment was performed to investigate the influences of shear connector on shear resistance capability. The numerical analysis's results should that the H/B ratio of shear key is more effective than angle of shear key against shear strength and shear behavior, and it is more desirable to use a half of the H/B ratio of shear key. The specimen was made with same condition as AASHTO recommended. There model tests were performed under various form of shear key, number, arrangement reinforcement and condition using epoxy. As a result of the experiment, there is little difference(or there is no difference) between the case of using epoxy on shear connector and the unused case.

  • PDF

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao;Wang, Zhe;Wang, Tao;Wang, Xiao-Ting
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.759-769
    • /
    • 2018
  • This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.

Shear Key Design of Concrete Track on Bridge (교량구간 콘크리트궤도의 전단키 설계)

  • Back, Hyo-Sun;Lee, Ho-Ryong;Bae, Sang-Hwan;Cho, Hyun-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3251-3255
    • /
    • 2011
  • Being the concrete track laid on bridge, due to track-bridge temperature difference, traction and brake force, and nosing force, the horizontal force can be applied to the track slab. Therefore, shear key structures to resist this horizontal force should be installed. The shear key structures installed in the Kyeong-Bu high-speed line are consisted of four shear keys at every slab with the length of 6 to 8m. However, in the point of view of construction, it is more advantageous to curtail the numbers of shear keys, and thus, the numbers and spacing of the shear keys should be carefully determined. In this study, hence, the effects of slab length, the numbers and spacing of the shear keys on design of shear key and track slab are examined.

  • PDF

Experimental study on the shear failure model for concrete under compression-shear loading

  • Shu, Xiaojuan;Luo, Yili;Zhao, Chao;Dai, Zhicheng;Zhong, Xingu;Zhang, Tianyu
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 2022
  • The influence of normal stress perpendicular to the potential shear plane was always neglected in existing researches, which may lead to a serious deviation of the shear strength of concrete members in practice designs and numerical analyses. In this study, a series of experimental studies are carried out in this paper, which serves to investigate the shear behavior of concrete under compression shear loading. Based on the test results, a three-phase shear failure model for cohesive elements are developed, which is able to take into consideration the influence of normal stress on the shear strength of concrete. To identify the accuracy and applicability of the proposed model, numerical models of a double-noted concrete plate are developed and compared with experimental results. Results show that the proposed constitutive model is able to take into consideration the influence of normal stress on the shear strength of concrete materials, and is effective and accurate for describing the complex fracture of concrete, especially the failure modes under compression shear loadings.

An Experimental Study on the Joints in Ultra High Performance Precast Concrete Segmental Bridges (초고성능 프리캐스트 콘크리트 세그멘탈 교량 접합부에 대한 실험 연구)

  • Lee, Chang-Hong;Chin, Won-Jong;Choi, Eun-Suk;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.235-244
    • /
    • 2011
  • Failures of segmental bridges have been attributed to the inadequate joint connection techniques, which led to corrosion of the post-tensioned tendons connecting the segmental joints. The principal objective of this study is to evaluate the performances of the in-situ cast joint and epoxy applied shear key joints as a function of shear and ultimate strengths. Furthermore, shear behavior and strength of shear key joints in ultra high performance precasted concrete segmental bridges are experimentally evaluated to understand its shear failure behavior. The test parameters of shear key shape and type, load-displacement relations, cracking behavior, concrete strength, and fracture modes are considered in the study. Also, several parameters which influence the mechanical behavior of the shear key joint are analyzed. Based on the study results, the optimal shear key shape and joint type are proposed for the joint design and analysis guidelines.

A Study on Shield Tunnel Assembling System Using a Cable and Island-Type Shear Key (강연선과 아일랜드타입 전단키를 이용한 쉴드터널 체결기술 연구)

  • Ma, Sang-Joon;Lee, Young-Sub;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.17-25
    • /
    • 2015
  • In this study, a new segment assembling method using cable tensible force and island-type shear key was developed to improve the problems of bolt assembling method of shield tunnel. The bolting system and island-type shear key system were compared to analyze the mechanical behavior that occurs in the segment. The study results obtained from structural investigation and numerical analysis technique showed that the shear strength of island-type shear key is higher than that of the bolt system. With the increase of the tensile strength, it is expected that the stability of the segment will be secured.

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.