• Title/Summary/Keyword: Shear key

Search Result 570, Processing Time 0.025 seconds

Effect of Oxygen and Shear Stress on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus

  • Duan, Xu-Jie;Yang, Li;Zhang, Xu;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.718-724
    • /
    • 2008
  • Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effects on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only $(1.22{\pm}0.02){\times}10^6 Da$. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of $(2.19{\pm}0.05){\times}10^6 Da$ at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

Effect of Shear Key and U strip on Flexural Behavior of Reinforced Concrete Beams Strengthened by CFS(Carbon Fiber Sheet) (탄소섬유쉬트로 보강된 철근콘크리트 보의 휨거동에 전단키와 U 스터립이 미치는 영향)

  • Choi, Hong-Shik;Lee, Chin-Yong;Yi, Seong-Tae;Lee, Si-Woo;Heo, Gweon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.88-91
    • /
    • 2004
  • It is generally known that the bonding strength of RC(Reinforced Concrete) flexural members strengthened by fiber sheet composites are sufficient and the bonding failure does not occur until the sheet failed. However, many researchers have been reported that, before the failure of the sheet, the bonding failure happens even though the bonding length is sufficient. This study was carried out to evaluate the effectiveness of shear key and U strip on flexural behavior of reinforced concrete beam structures. The ply number of CFS(Carbon Fiber Sheet), location of shear key, and existence or not of U strip were selected as the main test variables. Test results show that the behavior of a beam of which shear key is located in the nearby. of support and U strip is not existent, and having CFS of 1 ply is mostly improved.

  • PDF

Shear behavior of a demountable bolted connector in steel-UHPC lightweight composite structures

  • Gu, Jin-Ben;Wang, Jun-Yan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • Bolted connector could be an alternative to replace the conventional welded headed stud in steel-ultra high performance concrete (UHPC) lightweight composite structures. In this paper, a novel demountable bolted shear connector, consisting of a high-strength bolt (HSB) and a specially-designed nut which is pre-embedded in a thin UHPC slab, is proposed, which may result in the quick installation and disassembly, due to the mountable, demountable and reusable features. In order to study the shear behavior of the new type of bolted shear connector, static push-out tests were conducted on five groups of the novel demountable bolted shear connector specimens and one group of conventional welded headed stud specimen for comparison. The effect of the bolt shank diameter and aspect ratio of bolt on failure mode, shear stiffness, peak slip at the steel-UHPC interface, shear strength and ductility of novel bolted connectors is investigated. Additionally, design formula for the shear strength is proposed to check the suitability for assessment of the novel demountable bolted shear connectors.

Shear Resistance Performance of Vertical Construction Joints in Slurry Walls Using Concrete Shear Keys (콘크리트 전단키에 의한 지하연속벽 수직시공이음부의 전단저항 성능)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.399-400
    • /
    • 2023
  • Current building structural standards require the shear strength and rigidity in the design of vertical construction joints in a slurry wall. This paper proposes a shear key resistance method for shear connection of vertical construction joints, and compares its structural performance with the currently prevalent method of shear friction rebar. The study found the structural performance of the shear key resistance method was significantly better than that of the shear friction rebar method.

  • PDF

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC

  • Hu, Yuqing;Zhao, Guotang;He, Zhiqi;Qi, Jianan;Wang, Jingquan
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.103-118
    • /
    • 2020
  • The static behavior of grouped large-headed studs (d = 30 mm) embedded in ultra-high performance concrete (UHPC) was investigated by conducting push-out tests and numerical analysis. In the push-out test, no splitting cracks were found in the UHPC slab, and the shank failure control the shear capacity, indicating the large-headed stud matches well with the mechanical properties of UHPC. Besides, it is found that the shear resistance of the stud embedded in UHPC is 11.4% higher than that embedded in normal strength concrete, indicating that the shear resistance was improved. Regarding the numerical analysis, the parametric study was conducted to investigate the influence of the concrete strength, aspect ratio of stud, stud diameter, and the spacing of stud in the direction of shear force on the shear performance of the large-headed stud. It is found that the stud diameter and stud spacing have an obvious influence on the shear resistance. Based on the test and numerical analysis results, a formula was established to predict the load-slip relationship. The comparison indicates that the predicted results agree well with the test results. To accurately predict the shear resistance of the stud embedded in UHPC, a design equation for shear strength is proposed. The ratio of the calculation results to the test results is 0.99.

Strength Estimation of Joints in Floating Concrete Structures Subjected to Shear (전단을 받는 부유식 콘크리트 구조물 접합부의 강도 평가)

  • Yang, In-Hwan;Kim, Kyung-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study explores the structural behavior of module joints in floating concrete structures subjected to shear. Crack patterns, shear behavior and shear capacity of shear keys in joints of concrete module were investigated. Test parameters included shear key shape, or inclination of shear keys, confining stress levels and compressive strength of concrete. Test results showed that shear strength of joints increased as shear key inclination increased. Test results also showed that shear strength of concrete module joints increased with the increase of confining stress levels. The equation for predicting shear strength of joints was suggested, which was based on the test results. Shear strength prediction by using the equation suggested in this study showed good agreement with test results.

Effect of Shear Key and Edge Length of Near Surface-Mounted FRP Plate in Concrete (콘크리트에 표면매입 보강된 FRP판의 전단키 및 연단거리 효과)

  • Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • This paper presents a bond test to find the effect of shear key and edge length from the bonded FRP in near surface-mounted(NSM) retrofit using FRP plate. Main parameters in the test are the location and size of shear key and the edge length. For the test, 10 specimens were made by embedding FRP plate of $3.6mm{\times}16mm$ into $400mm{\times}200(300)mm{\times}400mm$ concrete block and fixing it by using epoxy. Tensile load was applied to the FRP of the specimens until failure and was recorded at each load increase. In addition, the bond slip and elongation of FRP were measured during the test. From the test, it was found that the further the shear key located from the loading, the higher strength we could get. The bond strength inversely depended on the size of shear key. Especially, when the size of shear key was to be lagger than certain size, the bond strength decreased to very low value; even less than that of the case without shear key. The bond strength somewhat increased corresponding to the increase of edge length from the bonded end of FRP to loading in spite of same bond length. The bond-slip between FRP and concrete governed overall deformation in the bond test of NSM FRP so that the effect of excessive slip is necessary to be considered in the design.

An Experimental Study on the Behavior of Precast Concrete Shear Keys (프리캐스트 콘크리트 전단키의 역학적 거동에 관한 실험연구)

  • 오병환;이준서;이형준;임동환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.86-89
    • /
    • 1992
  • In the precast segmental method of construction, segments of a structure are precast, assembled, and tied together by post-tensioning to form the structure. Shear strength and behavior of points in precast concrete structures are important problems in the design of these structures. An experimental program was set up study the shear behavior of precast concrete shear keys. experimental models of keyed joints include a single key, representing one of a series include the shear key shape, d/h ratio(1/4, 1/5, 1/7), and inclined angle (45。 60。 75。). Two different types of joints, i.e., epoxied joint and dry joints were studied. From the present tests, it is found that epoxied joints have higher shear strength than those of dry joints, and that high d/h ratio keys have higher shear strength than those of low d/h ratio keys. The keys with 60。-inclined angle shows the highest shear strength among various angles.

  • PDF