• Title/Summary/Keyword: Shear key

Search Result 570, Processing Time 0.029 seconds

Identification of shear transfer mechanisms in RC beams by using machine-learning technique

  • Zhang, Wei;Lee, Deuckhang;Ju, Hyunjin;Wang, Lei
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.43-74
    • /
    • 2022
  • Machine learning technique is recently opening new opportunities to identify the complex shear transfer mechanisms of reinforced concrete (RC) beam members. This study employed 1224 shear test specimens to train decision tree-based machine learning (ML) programs, by which strong correlations between shear capacity of RC beams and key input parameters were affirmed. In addition, shear contributions of concrete and shear reinforcement (the so-called Vc and Vs) were identified by establishing three independent ML models trained under different strategies with various combinations of datasets. Detailed parametric studies were then conducted by utilizing the well-trained ML models. It appeared that the presence of shear reinforcement can make the predicted shear contribution from concrete in RC beams larger than the pure shear contribution of concrete due to the intervention effect between shear reinforcement and concrete. On the other hand, the size effect also brought a significant impact on the shear contribution of concrete (Vc), whereas, the addition of shear reinforcements can effectively mitigate the size effect. It was also found that concrete tends to be the primary source of shear resistance when shear span-depth ratio a/d<1.0 while shear reinforcements become the primary source of shear resistance when a/d>2.0.

Microstructure, Thermal Properties and Rheological Behavior of PLA/PCL Blends for Melt-blown Nonwovens (멜트블론 부직포 제조를 위한 PLA/PCL 블렌드의 미세구조, 열적특성, 및 유변학적 성질)

  • Sun, Hui;Yu, Bin;Han, Jan;Kong, Jinjin;Meng, Lingrui;Zhu, Feichao
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.477-483
    • /
    • 2014
  • Poly(lactic acid) (PLA) and poly(${\varepsilon}$-caprolactone) (PCL) blends with various components for melt-blown non-wovens were prepared by a twin-screw extruder. Tributyl citrate (TBC) was added in order to improve the miscibility between PLA and PCL. The results showed that small circular particles of PCL were dispersed in PLA matrix uniformly. The addition of PCL had the heterogeneous nucleation effect on the crystallization of PLA and decreased thermal stability of PLA. The flow of pure PLA and blends approached to Newtonian liquid at a low shear rate and expressed more obvious viscoelasticity at a high shear rate.

Classification method for failure modes of RC columns based on key characteristic parameters

  • Yu, Bo;Yu, Zecheng;Li, Qiming;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • An efficient and accurate classification method for failure modes of reinforced concrete (RC) columns was proposed based on key characteristic parameters. The weight coefficients of seven characteristic parameters for failure modes of RC columns were determined first based on the support vector machine-recursive feature elimination. Then key characteristic parameters for classifying flexure, flexure-shear and shear failure modes of RC columns were selected respectively. Subsequently, a support vector machine with key characteristic parameters (SVM-K) was proposed to classify three types of failure modes of RC columns. The optimal parameters of SVM-K were determined by using the ten-fold cross-validation and the grid-search algorithm based on 270 sets of available experimental data. Results indicate that the proposed SVM-K has high overall accuracy, recall and precision (e.g., accuracy>95%, recall>90%, precision>90%), which means that the proposed SVM-K has superior performance for classification of failure modes of RC columns. Based on the selected key characteristic parameters for different types of failure modes of RC columns, the accuracy of SVM-K is improved and the decision function of SVM-K is simplified by reducing the dimensions and number of support vectors.

Shear Rate Effect on Undrained Shear Behavior of Holocene Clay (자연 퇴적 점성토의 비배수 전단강도에 미치는 전단 속도의 영향)

  • Jung, Min-Su;Chae, Jong-Gil;Shibuya, Satoru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1181-1192
    • /
    • 2008
  • A laboratory investigation was carried out into effects of strain rate on undrained shear behavior of Holocene clay underneath Kobe Airport with an objective to evaluate the factor of safety of the retaining structure built on it. It was examined in a series of triaxial compression and extension tests performed using different rate of axial straining. A comparative compression test in which the strain rate was changed in steps was also carried out. Similar tests were performed in constant-volume direct shear box (DSB) test. And, the deformation characteristics of the clay were also examined in order to evaluate the variation of stiffness during undrained shearing. It was found that the undrained strength increased with not only the shear rate but also the consolidation period. ISOTACH properties seemed a key to govern the undrained shear behavior.

  • PDF

Dispersion Effects of Wave Force on Interlocking Caisson Breakwater with Shear-Key (전단키형 인터로킹 케이슨 방파제의 파력분산효과)

  • Song, Sung Hoon;Park, Min Su;Jeong, Youn Ju;Hwang, Yoon Koog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • Long caisson breakwaters can improve the structural safety of a caisson due to the wave dispersion effect which reduces the average wave force acting on one caisson. However, in order to make long caissons, there are many manufacturing and construction limitations. Recently, interlocking caisson systems, which are to form a long caisson by interlocking individual caissons with adjacent caissons, have been much attention. In the present study, a interlocking caisson system with shear-keys was proposed and the wave dispersion effect according to the shear-key was evaluated analytically. As a result, (1) Because of the asymmetric shape of the interlocking caisson, the structure behavior and the wave dispersion effect of one are also asymmetric. (2) The wave dispersion effect is more influenced by the distribution and characteristics of wave acting on each caisson rather than the shape of the shear-key such as shear angle, height, shear length ratio. (3) The interlocking caisson breakwater is almost the same behavior and wave dispersion effect as a fully integrated breakwater.

Dynamic characteristics analysis of partial-interaction composite continuous beams

  • Fang, Genshen;Wang, Jingquan;Li, Shuai;Zhang, Shubin
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.195-216
    • /
    • 2016
  • The dynamic characteristics of continuous steel-concrete composite beams considering the effect of interlayer slip were investigated based on Euler Bernoulli's beam theory. A simplified calculation model was presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are calculated and compared with the experimental data and the FEM results. The calculated results using the proposed method agree well with the experimental and FEM ones on the low order modes which mainly determine the vibration properties.

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

Performance of an isolated simply supported bridge crossing fault rupture: shake table test

  • Xiang, Nailiang;Yang, Huaiyu;Li, Jianzhong
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.665-677
    • /
    • 2019
  • This study utilizes large-scale shake table test to investigate the seismic performance of an isolated bridge with lead rubber bearings crossing an active fault. Two transverse restraining systems with and without shear keys are tested by applying spatially varying ground motions. It is shown that the near-fault span exhibits larger bearing displacement than the crossing-fault span. Bridge piers away from the fault rupture are more vulnerable than those adjacent to the fault rupture by attracting more seismic demand. It is also verified that the shear keys are effective in restraining the bearing displacement on the near-fault span, particularly under the large permanent ground displacement.

Flexural performance of double skin composite beams at the Arctic low temperature

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.431-446
    • /
    • 2020
  • This paper presents the flexural performance of double skin composite beams (DSCBs) at different Arctic low temperatures. 12 DSCBs were prepared and tested under two-point loading at different Arctic low temperatures of 20, -30, -50, and -70℃. The studied parameters include low-temperature level (T), steel-faceplate thickness (t), shear span ratio (λ), and spacing of headed studs (S). The experimental investigations under two-point loading tests showed that flexural failure occurred to all DSCBs, even including the specimen designed with the small λ ratio of 2.9. The ultimate strength behaviours of DSCBs were improved due to the improved mechanical properties of constructional materials and the confinement on shear connectors. The DSCB subjected to two-point loading and low temperatures exhibits a five-stage working mechanism. The stiffness and strength indexes of DSCBs increase linearly with temperature and t value increasing, while decreasing as shear span ratio boosts. In the contrast, the change of S value from 150 to 200 mm has little effect on the ultimate strength behavior of DSCB.