• Title/Summary/Keyword: Sheet Analysis

Search Result 1,843, Processing Time 0.036 seconds

Characterization of Sheet Formation by Image Analysis (화상분석 시스템을 이용한 지필도 평가)

  • 원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.30-40
    • /
    • 1999
  • The possibility of the characterization of sheet formation by image analysis with transmitted light was evaluated. Specific perimenter, average perimeter and variation could not be used to predict the sheet formation because there were no corrleation. Although image analysis method still have a lot of problems , it was found that the contrast intensity obtained by image analysis with transmitted light can be used to predict the sheet formation. In the case of highly filled sheet, the intensity of transmitted light was too low to characterize the sheet formation . However, it was possible to characterize the formation of unfilled heavy weight paper($\leq$200g/㎡).

  • PDF

A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet (마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구)

  • Son, Young-Ki;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

FE Analysis for Application of Isotropic Steel Sheet on Auto-Roof Panel (등방성 강판의 자동차용 Roof Panel 부품 적용 특성 해석)

  • Han S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.241-246
    • /
    • 2006
  • The isotropic steel sheet was developed and started to apply on the auto-body outer panel, however the characteristics of application on auto-body were not well known. In this paper the FE analysis of outer panel of auto-body was carried out to investigate the characteristics of isotropic steel sheet. For the FE analysis of the roof panel of ULSAB body the isotropic steel sheet and the bake hardening steel sheet were used. The Isotropic steel sheet shows more deformation at punch bottom area of roof panel than the bake hardening steel sheet that is most required forming properties far outer panel to obtain the shape likability of forming parts. It is shown that the isotropic steel sheet has suitable material properties far outer panels of auto-body.

Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steels (저탄소강판을 이용한 굽힘 가공에서 발생하는 꺾임 현상에 대한 발생기구 해석)

  • Park, K.C.;Yoon, J.B.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.317-322
    • /
    • 2007
  • In order to investigate the cause and condition of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was related with the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in 0.5-0.6t sheet in $15{\sim}25mm$ radius bending. The tendency of fluting occurrence was reduced as decreasing the radius of bending, increasing thickness of bended sheet, and removing irregularity in sheet and bending processes.

The Numerical Analysis on the Behaviour of Combined Sheet Pile in the Reclaimed Ground Mixed by Sandy Soil and Clayey Soil (사질토와 점성토가 혼재하는 해안 매립지반에서 조합형 Sheet Pile의 거동에 관한 해석적 연구)

  • Kim, Byung-Il;Kim, Young-Sun;Han, Sang-Jae;Park, Eon-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.9-21
    • /
    • 2020
  • In this study, the design method of the combined sheet pile was considered in the coastal landfill where sandy and clayey soils are mixed, and the behavior in excavation was analyzed. It was confirmed from the elasto-plastic analysis that the predicted behavior of the temporary facilities of earth retaining differs according to the type of the combined sheet pile method (Built up, Interlocking, Welding) and the analysis method (soldier pile method, continuous wall method). In the case of sheet pile member force, the results of the continuous wall analysis method predicted the most conservative results. When the stress ratio (calculation/allowance) of each member was analyzed based on the maximum member force of the combined sheet pile method, the maximum value was obtained for bending moment in the side pile and combined stress in the case of the strut. As a result of finite element analysis, the member force of the side pile was the largest in the short-term effective stress analysis condition, while the compressive force of the strut was large in the consolidation analysis. When comparing the results of the elasto-plastic analysis and the finite element analysis, the shear force of the side pile and the axial force of the strut were greatly evaluated in the elasto-plastic analysis, and the bending moment of the side pile was the largest in the short-term effective stress condition of the finite element analysis. In addition, the displacement of the side pile was predicted to be greater in the finite element analysis than in the elasto-plastic analysis.

Numerical and Experimental Analysis of Hydroforming Process of Sheet Metal Pairs (박판페어를 이용한 하이드로포밍 공정의 수치적 및 실험적 해석)

  • Kim T. J.;Yang D. Y.;Han S. S.;Nam J. B.;Jin Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.50-53
    • /
    • 2001
  • Hydroforming process has become an effective manufacturing process because it can be adaptable to forming of complex structural components. Tube hydroforming has been successfully developed in the real industrial field by many researchers. However, there still remains the constraint about shape which can be manufactured by tube hydroforming. In order to improve this constraint of shape and formability of conventional sheet metal forming, hydroforming process of sheet metal pairs becomes an important technology. In the present work, the finite element analysis of hydroforming process of sheet metal pairs is presented. After basic study about experimental parameters based on numerical analysis, hydroforming process of sheet metal pairs is developed which uses hydraulic pressure as a main forming source.

  • PDF

Analysis of Wrinkling INitiation and Growth in Cylindrical Cup Deep Drawing Process (원형컵 디프드로잉에서의 주름발생 해석)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03a
    • /
    • pp.18-21
    • /
    • 1999
  • The wrinkling of thin sheet metal induced by compressive instability is one of major defects in sheet metal forming processes. compressive instability is influence by many factors such as mechanical properties of the sheet material geometry of the sheet contact conditions and plastic anisotropy. The analysis of compressive instability in a plastically deforming body is rather difficult because the effects of the above-mentioned factors are rather complex and the instability behavior may show swide variations even for small deviations of the factors. in this work the bifurcation theory is introduced for the finite elemental analysis of the instability behavior of a thin sheet with initially sound geometry and property. All the above-mentioned factors are conveniently considered by the finite element method. The instability limit is found by introducing a criterion scheme into the incremental analysis and the post-bifurcation behavior is analyzed by introducing the branching scheme. Wrinkling initiation and growth in the deep drawing process are analyzed.

  • PDF

An Elasto-Plastic Finite Element Analysis on Deep Drawing of Clad Sheet Metal (클래드 강판재에 의한 축대칭 디프드로잉의 탄소성 유한요소해석)

  • 류호연;김영은;김종호;정완진
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.411-417
    • /
    • 2001
  • A Comparative study on deep drawing of clad sheet is carried out to investigate the forming characteristics and the effectiveness of modified finite element analysis. An elasto-plastic finite element analysis Is developed to analyze the forming of clad sheet using explicit scheme and layered shell. Axisymmetric deep drawing of stainless clad metal sheet is performed and thickness distribution is obtained. The corresponding finite element analysis shows good agreement with the results. Some disagreement can be explained by the assumption of shell element and the complexity of deformation of clad sheet.

  • PDF

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

A Study on the 2-Layered Sheet Metal Forming Analysis and Applications in Automotive Exhaust Component (2-Layer 블랭크를 적용한 자동차 배기 부품의 박판 성형 해석 및 적용)

  • Roh G. T.;Jeong W. S.;Moon M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.318-321
    • /
    • 2005
  • The shell part is made of 2-layered blank because of functional requirements. To investigate the draw formability in this kind of part, the 2-layered sheet metal forming analysis process should be stipulated. First of all, treatment of contact with each blank must be considered to prevent the penetration on the each blank. Subsequently, applying the draw bead force is considered carefully because application of drawbead force for analysis is different with equivalent drawbead force. Formability as like crack, neck and wrinkles is estimated by FLD(Forming Limit Diagram) and thinning. A feasibility of the 2-layered sheet metal forming analysis process study is verified compare 2-layered sheet metal forming analysis with experimental results.

  • PDF