• Title/Summary/Keyword: Ship%27s Bottom

Search Result 5, Processing Time 0.024 seconds

Bank Effect of a Ship Operating in a Shallow Water and Channel (천수 및 수로 운항 시 선박의 측벽효과)

  • Park, Dong-Woo;Choi, Hee-Jong;Pai, Kwang-Jun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • When a ship operates in a shallow water and channel, the hull sinkage and asymmetrical force generated around the ship by the influence of sea bottom and bank walls are caused collision with sea bottom, other ships or the bank itself. Especially, the shipping company and pilots navigating the area of Europe and North America with many channels are deal with it as a important matter to prevent collision. In this paper, hydrodynamic force generated between the ship and bank using the numerical analysis for the safe navigation of ship, that is, sway force and yaw moment should be presumed qualitatively. It makes a program for fluid analysis of the shallow water and bank effect. Analyses are carried out for three kind of parameter, that is, ship's speed, water depth and ship-bank distance for crude oil carriers. The numerical analysis results are compared with results of the experiments and the previous published papers.

Solitary Wave-like Ship Induced Waves and Its Associated Currents in a Water Channel of Narrow Width (협수로에서 생성되는 고립파 형태의 항주파와 항주파류)

  • Cho, Yong Jun;Choi, Han Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.202-216
    • /
    • 2015
  • In the narrow water channel, which has been frequently deployed in the artificial canal in the South Korea due to the lack of available land, solitary wave type ship induced waves can occur. In order to test this hypothetical view, we carried out the numerical simulation. Numerical model consists of Navier-Stokes Equations and VOF, and the verification is implemented using the data by PIANC (1987) and the analytical model derived in this study. It was shown that numerically simulated front wave height are much larger than the one by PIANC (1987), and the fluctuation of free surface near the channel bank persists much longer (around 20s). For the case of stern waves, numerically simulated wave height are somewhat smaller than the data by PIANC (1987). These results seriously deviates from the general characteristics of ship induced waves observed in the wide water channels, and leads us to conclude that ship induced waves is severely affected by the width of water channel. It was also shown that the currents from the channel banks toward a ship, and currents from the ship toward the channel banks are alternatively occurring due to reflection at the channel banks. The velocity of currents reaches its maximum at 0.90 m/s, and these values are sustained through the entire depth. which implies that severe scourings at the channel bottom can be underway.

Evaluation of Multiple Access Protocols for Controlling UUV (무인잠수체 통제를 위한 다중접속 프로토콜 평가)

  • Jung, Seung-Back;Cho, Jin-Soo;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.279-285
    • /
    • 2008
  • This study includes the efficiency assessment of a multiple access protocol for UUV (Underwater unmanned vehicle) control. Most of UUVs are controled by wire now; however, wireless control is demanded because of the demerit of the wire control that limits the place and activity. This study simulates efficiency of a standardization multiple access protocol (Pure ALOHA, Slotted ALOHA, Nonpersistent CSMA, Slotted Nonpersistent ISMA) formed for the purpose of performing wireless communication controlled by the ship or communication buoy at the sea surface and by the under water communication node at the bottom in order to efficiently control the UUV's. Results show that no significant changes occur related to changing type of the mother ship and the communication node; In addition, the Non-persistent CSMA and the Slotted Non-persistent ISMA show relatively high efficiency for underwater acoustic communication.

Noise Exposure Level Measurements for Different Job Categories on Ships (선박의 담당업무에 따른 소음노출레벨 측정에 관한 연구)

  • Im, Myeong-Hwan;Choe, Sang-Bom
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.875-882
    • /
    • 2021
  • To minimize occupational noise induced hearing loss, it is recommended that workers should not be exposed to noise levels exceeding 85 dBA for over 8 h. In the present study, noise exposure levels were measured for seven workers based on their tasks on a training ship. The A-weighted noise exposure level (Lex,24h) was measured by taking into account the A-weighted equivalent continuous sound level (LAeq,i), duration (h) and noise contribution (Lex,24h,i) from the workers' locations. Results are thus obtained for different job categories as follows: officer group Lex,24h=56.1 dB, navigation crew Lex,24h=58.9 dB, navigation cadet Lex,24h=62.0 dB, ship's cook Lex,24h=64.3 dB, engine cadet Lex,24h=91.1 dB, engineer Lex,24h=91.1 dB, and engine crew Lex,24h=95.1 dB. It was determined that the engineers, engine crews, and engine cadets in charge of machinery must wear hearing protection devices. By wearing hearing protection devices when working in highly noisy engine rooms, it is estimated that the noise expose levels could be reduced by the following amounts: engineer Lex,24h=23.1 dB, engine Crew Lex,24h=24.4 dB, and engine cadet Lex,24h=21.5 dB. Moreover, if the no. 2 lecture room and mess room bottom plates in the cadets accommodations were improved to the 64 mm A-60-class floating plates, then further reductions are possible as follows: navigation cadet Lex,24h=4.3 dB and engine cadet Lex,24h=1.8 dB.

On The Development of The Stern Form with Low Resistance and High Propulsive Efficiency for Full Ships (저저항(低抵抗) 고추진(高推進) 효율(效率)의 비대선(肥大船) 선미선형(船尾船型)의 개발(開發)에 관하여)

  • Ho-Chung,Kim;Chun-Ju,Lee;Young-Bok,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.89-99
    • /
    • 1990
  • It is required to develop a hull form with low resistance and high propulsive efficiency for the improvement of the ship-board operational economy. Since the hull forms with low resistance frequently have lower propulsive efficiency and on the other hand the hull forms with higher propulsive efficiency don't show good resistance characteristics, it is always very difficult to obtain economical hull forms which require less propulsive power accordingly. Efforts have been made to pursue a stern form with excellent resistance and propulsion characteristics together by shaping the run of the so-called buttock-flow type stern, which is known to have good viscous resistance performance, like that of conventional aftbody(U-type or Hogner type) featured by high propulsive efficiency. First model tests confirmed that the above concept can be one of the alternative approaches to the design of the good stern form and by the continuing efforts thereafter for the refining of the concept, propelled by the first promising results, stern form of good resistance performance together with good propulsive efficiency has been realized to some extent. In addition, it is confirmed that the new new stern can have better cavitation and vibration characteristics due to uniform wake-fields and the compact engine room arrangement can be possible due to it's larger floor area in way of engine room double bottom as compared with usual barge stern.

  • PDF