• Title/Summary/Keyword: Ship docking

Search Result 31, Processing Time 0.023 seconds

Perception of Ship's Movement in Docking Maneuvering using Ship-Handling Simulator

  • Arai, Yasuo;Minamiya, Taro;Okuda, Shigeyuki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.3-10
    • /
    • 2006
  • Recently it is coming to be hish reality on visual system in ship-handling simulator depending on the technical development of 3D computer graphics. Even with high reality, it is possible that visual information presented seafarers through screen or display is not equivalent to the real world. In docking maneuvering, visual targets or obstructs are sighted close to ship's operator or within few hundred meters, so it might be possible to affect visual information such as the difference between both eyes' and single eye's visual sight. Because it is not possible to perceive of very slow ship's movement by visual in case of very large vessels, so the Doppler Docking SONAR and/or Docking Speed and Distance Measurement Equipment were developed and applied for safety docking maneuvering. By the way, the simulator training includes the ship's maneuvering training in docking, but in Ship-handling Simulator and also onboard, there are some limitations of perception of ship's movement with visual information. In this paper, perception of ship's movement with visual system in Ship-handling Simulator and competition of performances of visual systems that are conventional screen type with Fixed Eye-point system and Mission Simulator. We got some conclusions not only on the effectiveness for visual system but also on the human behavior in docking maneuver.

  • PDF

Parametric Study for Assessment of Reaction Forces on Ship Docking Supports

  • Ryu, Cheol-Ho;Kim, Sung-Chan;Lee, Jang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.290-301
    • /
    • 2013
  • The docking analysis of a global ship structure is requested to evaluate its structural safety against the reaction forces at supports during docking works inside a dry dock. That problem becomes more important recently as the size of ships is getting larger and larger. The docking supports are appropriately arranged in a dock to avoid their excessive reaction forces which primarily cause the structural damages in docking a ship and, up to now, the structural safety has been assessed against the support arrangement by the finite element analysis (FEA) of a global ship structure. However, it is complicated to establish the finite element model of the ship in the current structural design environment of a shipyard and it takes over a month to finish the work. This paper investigates a simple and fast approach to carry out a ship docking analysis by a simplified grillage model and to assign the docking supports position on the model. The grillage analysis was considered from the motivation that only the reaction forces at supports are sufficient to assess their arrangement. Since the simplified grillage model of the ship cannot guarantee its accuracy quantitatively, modeling strategies are proposed to improve the accuracy. In this paper, comparisons between the proposed approach and three-dimensional FEA for typical types of ships show that the results from the present grillage model have reasonably good agreement with the FEA model. Finally, an integrated program developed for docking supports planning and its evaluation by the proposed approach is briefly described.

Effect of Consecutive Ship Docking and Undocking on Seawater Circulation in Harbor (선박의 연속적 접⋅이안이 항내 해수순환에 미치는 영향)

  • Hong, Namseeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.177-185
    • /
    • 2016
  • In this study, the model developed by Hong (2012) was modified to describe the consecutive docking/undocking situation and was also applied to investigate the effect on seawater circulation in Busan port by consecutive docking/undocking at the connecting bridge of Busan port. Numerical experiments for various docking/undocking cases were performed by dumping the initial concentration within Busan Port and indicated that the concentration in Busan port becomes steady state without numerical wiggles after sufficient time (at least 20 or 30 days). In addition, it was found that the seawater circulation under ship docking was slightly reduced in comparison with that under ship undocking, and the approach time to the target concentration under all the docking cases increased in comparison with the undocking case.

Implementation of Testbed of Guidance System for Docking of Ship Using Location Based UWB Sensor (위치기반 UWB 센서를 이용한 선박 접안 유도시스템의 테스트베드 구현)

  • Shin, Do-Sung;Lee, Seong-Ro;Oh, Il-Hwan;Jung, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1314-1321
    • /
    • 2010
  • This system configures a position Sensor as installing on the ship and a guidance system docking of ship what distinguish of the ship about the use and size. The maintain system is received the result of distinction via UWB reader. This system send a information of ship of docking position to user. Thus it suggests the safety to prevent from crash among ships and saves energy and stop waste. The proposed system periodically updates the information of docking position of the ship and monitors in real-time according to the user's request from personal mobile devices. In this paper, we implement of a guidance system Testbed for docking of the ship using position UWB sensor. And user is provided convenience to find easily user's ship in docking area through user interface with Java. Addedly it is possible to prevent ship theft.

A Study on Docking Analysis for Conventional LNGC (Conventional LNGC의 도킹 해석에 관한 연구)

  • Choi, Joong-Hyo;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.10-15
    • /
    • 2008
  • The proper docking block arrangement, loading condition and structural reinforcement are required to ensure structural safety of ship, when she is in re-docking and launching for inspection or repair. The large reaction force due to narrow bottom tangent area, heavy weight and ballast loading are occurred at aft body and fore body of ship. Especially, in case of LNGC, the strength evaluation is necessary for cargo hold areas including mid-body because tank hydro test is performed in dry-dock. The analysis results and experiences to confirm structural safety for docking of conventional LNGC$(138K{\sim}151.7K)$ are introduced in this paper.

  • PDF

Performance Requirement of Ship's Speed in Docking/Anchoring Maneuvering

  • Tatsumi, Kimio;Fujii, Hidenobu;Kubota, Takashi;Okuda, Shigeyuki;Arai, Yasuo;Kouguchi, Nobuyoshi;Yamada, Kozaburo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.67-72
    • /
    • 2006
  • Questionnaire survey on performance requirement of ship’s speed such as not only accuracy but also response and robustness were carried out, and the experiments to survey the GPS performances of static and dynamic characteristics were carried out simultaneously. In this paper, the questionnaire survey focusing on docking maneuvering, some analytic results of the survey, the results of GPS performance, and the possibility of adaptation for docking maneuvering on SDME and GPS are discussed. Consequently, from the results of questionnaire survey the performance requirement of ship’s speed in docking/anchoring maneuvering have need under 1cm/sec on the standard deviation, and speed information from GPS was adopted to use maneuvering information in docking/anchoring.

  • PDF

On the Docking Analysis of Global Ship Structure Using Simplified Grillage Model (간이화된 격자 구조 모델을 사용한 선박의 도킹 해석에 대하여)

  • Kim, Sung-Chan;Ryu, Cheol-Ho;Lee, Jang-Hyun;Lee, Kyung-Seok;Baek, Ki-Dae;Sohn, Sang-Yong;Choi, Joong-Hyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.710-718
    • /
    • 2008
  • This paper presents a simple and fast approach to plan the arrangement of supports and to do a ship docking analysis. The unpredicted structural damages often happen from a docking works as the size of ships are getting larger and larger. In docking a ship, excessive reaction forces from supports are primary causes of the structural damage. The grillage analysis method is employed to simply calculate only the reaction forces at supports. The grillage modeling strategies are proposed to improve the accuracy. In this paper, the results obtained by the proposed approach are compared with those of the current whole-ship FEA for typical types of ships. Comparison shows that the results from the present grillage approaches are reasonably in a good agreement with the 3-D full F.E one. Finally, an integrated program developed for the ship docking analysis is described.

Grillage Method Applied to the Planning of Ship Docking

  • Kim, Sung Chan;Ryu, Cheolho;Lee, Jang Hyun;Lee, Kyung Seok
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.150-157
    • /
    • 2016
  • When blocks are supported on a dock, huge reaction forces concentrated at the supports cause structural damage owing to local stress concentrations. Thus, the supports should be arranged to avoid local failure from the reaction forces by redistributing those forces. Docking analyses to determine the proper blocks and their support arrangements are introduced so that the local stresses are minimized to warrant the safety of the docking supports. Local stresses enforced by the support arrangement should be evaluated by finite element analysis (FEA). However, it is difficult to consider an accurate 3D geometry of the blocks in the finite element model because the structural design information is too complicated to determine within several days using the FEA model. This paper presents a simplified FE model to evaluate the safety of the arrangement of supports using a simplified grillage element. The grillage element can be efficiently used to obrain the reaction forces in docking analysis becasuse the reaction forces at the supports are enough to assess the safety of block. Since a simplified grillage model of the entire ship cannot accurately calculate the local stresses, an optimized modeling method based on the grillage element was introduced. The local reaction forces obtained by the proposed approach and three-dimensional FEA were discussed for typical types of ships. It is shown that the reaction forces obtained by the present grillage model are in reasonably good agreement with the FEA model.

Discussions on Availability of Weather Information Data and Painting Effect of Existing 8,600 TEU Container Ship Using Ship Performance Analysis Program

  • Shin, Myung-Soo;Ki, Min Suk;Lee, Gyeong Joong;Park, Beom Jin;Lee, Yeong Yeon;Kim, Yeongseon;Lee, Sang Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.377-386
    • /
    • 2020
  • This paper discusses the effectiveness of onboard measurements and data extracted from weather information for speed-power analysis. Furthermore, validation results of hull and propeller cleaning and painting during dry-docking are discussed. Wind and wave information can be obtained from onboard measurements or weather information from the National Oceanic and Atmospheric Administration (NOAA). The weather information of a specified position and time is extracted from NOAA weather data and compared with onboard measurements. In addition, to validate the effects of hull cleaning and painting during dry-docking, speed-power analysis results of before and after dry-docking are compared. The results show that both onboard measurements and weather information show acceptable reliability when added resistance and speed-power analysis results are compared with each other. Moreover, the ship performance analysis (SPA) software clearly shows the effects of hull cleaning and painting, and it can provide reliable analysis results with either onboard measurements or weather information. In conclusion, it is confirmed that the analysis method and SPA software used in this study are effective in analyzing the ship's speed-power performance.

Optimal Operational Strategy for Cross Docking Systems (크로스도킹 시스템의 최적 운영 전략)

  • Yu, Woo-Yeon;Cho, Chi-Woon;Yang, Jae-Kyung
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.103-114
    • /
    • 2006
  • A cross docking operation involves multiple trucks (known as inbound trucks) that deliver items from suppliers to a distribution center and multiple trucks (known as outbound trucks) that ship items from the distribution center to customers. Based on customer demands, an inbound truck may have its items transferred to multiple outbound trucks. Similarly, an outbound truck can receive its consignments from multiple inbound trucks. A unique characteristic of a cross docking system is the absence or prohibition of long term storage of items at the distribution center. Items delivered to the distribution center from suppliers are shipped to customers as soon as possible without being placed in storage in the distribution center. The objective of this paper is to develop the optimal operational strategy for finding the best truck docking sequence for both inbound and outbound trucks in order to minimize total operation time where a temporary storage area is not available in a cross docking system.