• Title/Summary/Keyword: Short Range Wireless Networks

Search Result 45, Processing Time 0.185 seconds

Control Network using Bluetooth with Wire Network (유선 네트워크 기반의 근거리 무선 통신을 이용한 제어용 네트워크)

  • Gwak, Jae-Hyeok;Im, Jun-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.476-479
    • /
    • 2003
  • Recently, Bluetooth has been regarded as a new technology for short-range wireless connection. Although initial application of Bluetooth technology has been focused mainly on replacing cables between hand-held devices due to a limited packet size and short-range, general wireless telecommunication such as PAN and Ad hoc networks via Bluetooth-equipped devices is expected to be one of the most popular applications. Wireless equipments have been used to exchange data between host and mobile unit. The exchanging data may be several bytes of control command and the value of sensors with ultra-sonic, vision sensor, and encoder from mobile robot. However, most wireless equipments have some drawbacks such as lack of authentication, large size and high price. On the other hand, the benefits of Bluetooth are small size, low power, low price except short-range. Especially, there are some difficulties when wireless modules are used in indoor environments. In this paper, a method of using wire network in Bluetooth network is investigated as a solution to overcome the short-range problem of Bluetooth and difficulty in indoor environment.

  • PDF

On the Interference of Ultra Wide Band Systems on Point to Point Links and Fixed Wireless Access Systems

  • Giuliano, Romeo;Guidoni, Gianluca;Mazzenga, Franco
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • Ultra Wide Bandwidth (UWB) spread-spectrum techniques will playa key role in short range wireless connectivity supporting high bit rates availability and low power consumption. UWB can be used in the design of wireless local and personal area networks providing advanced integrated multimedia services to nomadic users within hot-spot areas. Thus the assessment of the possible interference caused by UWB devices on already existing narrowband and wideband systems is fundamental to ensure nonconflicting coexistence and, therefore, to guarantee acceptance of UWB technology worldwide. In this paper, we study the coexistence issues between an indoor UWB-based system (hot-spot) and outdoor point to point (PP) links and Fixed Wireless Access (FWA) systems operating in the 3.5 - 5.0 GHz frequency range. We consider a realistic UWB master/slave system architecture and we show through computer simulation, that in all practical cases UWB system can coexist with PP and FWA without causing any dangerous interference.

Interference Aware Multipath Routing in Multi-rate Wireless Sensor Networks

  • Lee, Kang Gun;Park, Hyung Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.909-914
    • /
    • 2015
  • In wireless sensor networks, sensor nodes have a short transmission range and data is transferred from source to destination node using the multi-hop transmission. Sensor nodes are powered by battery and the link qualities are different, and the routing protocol in the wireless sensor network is one of the important technical issues. Multipath routing was proposed to reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing scheme for multi-rate wireless sensor networks. The multipath routing selects transmission paths to minimize transmission delay and path interference.

A Hybrid Adaptive Security Framework for IEEE 802.15.4-based Wireless Sensor Networks

  • Shon, Tae-Shik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.597-611
    • /
    • 2009
  • With the advent of ubiquitous computing society, many advanced technologies have enabled wireless sensor networks which consist of small sensor nodes. However, the sensor nodes have limited computing resources such as small size memory, low battery life, short transmission range, and low computational capabilities. Thus, decreasing energy consumption is one of the most significant issues in wireless sensor networks. In addition, numerous applications for wireless sensor networks are recently spreading to various fields (health-care, surveillance, location tracking, unmanned monitoring, nuclear reactor control, crop harvesting control, u-city, building automation etc.). For many of them, supporting security functionalities is an indispensable feature. Especially in case wireless sensor networks should provide a sufficient variety of security functions, sensor nodes are required to have more powerful performance and more energy demanding features. In other words, simultaneously providing security features and saving energy faces a trade-off problem. This paper presents a novel energy-efficient security architecture in an IEEE 802.15.4-based wireless sensor network called the Hybrid Adaptive Security (HAS) framework in order to resolve the trade off issue between security and energy. Moreover, we present a performance analysis based on the experimental results and a real implementation model in order to verify the proposed approach.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.

The Study for Establishment of Security Threat Measures for Secure NFC Service (안전한 NFC 서비스 활용 활성화를 위한 보안 위협 대책 마련을 위한 고찰)

  • Choi, Heesik;Cho, Yanghyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.219-228
    • /
    • 2018
  • The utilization of NFC has been continuously increasing due to the spread of smart phones and the development of short-range wireless communication networks. However, it has been suggested that stability and security of convenient NFC short-range wireless communications can be unstable and problematic. The unstable causes for NFC are the lack of security technologies for NFC, the controversy about personal information infringement, and the lack of social awareness on security breach against data settlement. NFC service can be conveniently used by simply touching other NFC devices and NFC tags through the NFC device. This thesis analyzes that NFC authentication technology, which is convenient for user are one of the unstable causes of security of NFC. This thesis suggest that ministry should research countermeasures and promote how users can use NFC safely. It also suggests that users should have awareness when they use payment and authentication service through NFC to prevent from security threat.

Performance Evaluation of Low Rate Wireless Home Network Embedded DSSS System (저속 무선 홈 네트워크 임베디드 DSSS 시스템의 성능 평가)

  • Roh, Jae-Sung
    • Journal of Digital Contents Society
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • Short-range wireless communication and networking technologies are becoming increasingly important in enabling useful mobile applications. for example, ZigBee technology is expected to provide low cost and low power connectivity for equipment that needs battery life as long as several months to several years. In addition, ZigBee can be implemented in mesh networks larger than is possible with Bluetooth. The main features of this ZigBee standard are network flexibility, low cost, very low power consumption, and low data rate in an adhoc self-organizing network among fixed, portable and moving devices. Home network/Home automation is one of the key market areas for Zigbee, with an example of a simple network This paper investigates the effect of short range wireless channel on the performance of Zigbee system and DSSS-BPSK signal transmission in AWGN, interference and Rician fading environments. And we investigate performance degradation due to interference and fading effects in short range wireless channel. In particular, the impacts of the fading and interference level on the bit error probability is shown in BER performance figures.

  • PDF

Effect of People Moving near Short-Range Indoor Propagation Links at 2.45 GHz

  • Kara Ali;Bertoni Henry L.
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.286-289
    • /
    • 2006
  • Measurement results are presented for the effects of people moving near and across short-range indoor propagation links at 2.45 GHz (ISM band). Excess loss due to scattering and blockage by human bodies in the vicinity of one terminal were measured for different radio links in an office environment. Statistics on fades due to human body motion are given. Polarization coupling (depolarization) for various radio links was measured, and correlation of polarization components is discussed as a basis for using polarization diversity reception in short-range indoor systems.

An Efficient Code Assignment Algorithm in Wireless Mesh Networks (무선 메쉬 네트워크에서의 효율적인 코드할당 알고리즘에 대한 연구)

  • Yeo, Jae-Hyun
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.1
    • /
    • pp.261-270
    • /
    • 2008
  • Wireless Mesh Networks (WMNs) have emerged as one of the new hot topics in wireless communications. WMNs have been suggested for use in situations in which some or all of the users are mobile or are located in inaccessible environments. Unconstrained transmission in a WMN may lead to the time overlap of two or more packet receptions, called collisions or interferences, resulting in damaged useless packets at the destination. There are two types of collisions; primary collision, due to the transmission of the stations which can hear each other, and hidden terminal collision, when stations outside the hearing range of each other transmit to the same receiving stations. For a WMN, direct collisions can be minimized by short propagation and carrier sense times. Thus, in this paper we only consider hidden terminal collision while neglecting direct collisions. To reduce or eliminate hidden terminal collision, code division multiple access (CDMA) protocols have been introduced. The collision-free property is guaranteed by the use of spread spectrum communication techniques and the proper assignment of orthogonal codes. Such codes share the fixed channel capacity allocated to the network in the design stage. Thus, it is very important to minimize the number of codes while achieving a proper transmission quality level in CDMA WMNs. In this paper, an efficient heuristic code assignment algorithm for eliminating hidden terminal collision in CDMA WMNs with general topology.

  • PDF

A Study on the Network Throughput of Bluetooth Packet Communication System for Short Distance Wireless Connectivity (근거리 무선 연결을 위한 블루투스 패킷 통신 시스템의 네트워크 처리율에 관한 연구)

  • Ye, Hwi-Jin;Kim, Moon;Kim, Seong-Chul;Roh, Jae-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.3
    • /
    • pp.281-287
    • /
    • 2007
  • The Bluetooth technology represents an attractive approach to enable short distance wireless connectivity. The Bluetooth standard operates at the 2.4 GHz ISM band and offers the advantage of establishing ad hoc networks, called piconet and scatternet. The spread of Bluetooth implementation in consumer products opens up a new short range wireless networking applications. Bluetooth MAC avoids packet collision within a piconet by simple time multiplexing. But lack of synchronization among independent neighboring piconets introduces packet overlapping within a time slot. In this paper, the wireless network throughput of Bluetooth packet transmission system applying the pure-ALOHA and slotted-ALOHA MAC is investigated according to the impact of channel environment. From the obtained results, the throughput of the Bluetooth MAC protocol shown to offer good performance in wireless channel, and the results are useful for the implementation of Bluetooth networks.

  • PDF