• Title/Summary/Keyword: Shunt capacitor

Search Result 107, Processing Time 0.043 seconds

Broadband Noise Reduction of Smart Panels using Piezoelectric Shunt Circuits (압전션트 회로를 이용한 지능패널의 광대역 소음저감에 관한 연구)

  • 정영채;김재환;이중근;하성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.624-629
    • /
    • 2003
  • In this paper, broadband shunt technique for increasing transmission loss is experimentally investigated. Piezoelectric shunt damping is studied using resonant shunt circuit and negative capacitor shunt circuit. A resonant shunt circuit is implemented by using a resistor and inductor. Negative Capacitor shunt damping is similar in nature to resonant shunt damping techniques, as a single piezoelectric material is used to dampen multi-mode. Performance of both methods is experimentally studied for noise reduction. This is based upon SAE J1400 test method and a transmission loss measurement system is provided for it. This paper will present the test setup fer transmission loss measurement and the tuning procedure of shunt circuits. Finally the results of sound transmission tests will be shown.

  • PDF

An Unequal Divider based on Transmission Line with Periodic Capacitor Shunt Connection (캐패시터가 주기적으로 병렬 연결된 전송선로를 이용한 비대칭 분배기)

  • Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.781-786
    • /
    • 2012
  • In this paper, we propose the design and performance of an unequal divider using transmission line with periodic capacitor shunt connection. To design divider with a high dividing ratio, we limit a high impedance line value to fabricate microstrip line and also, design a low impedance line of below $10{\Omega}$ using periodic capacitor shunt connection. As a design example, a 10:1 ratio divider was designed and measured at center frequency 1 GHz to show the validity of the unequal divider using periodic capacitor shunt connection. Its performance is in good agreements with the simulated results.

A study on voltage control system for 154kV substation (154kV 변전소 전압제어시스템에 대한 연구)

  • Jung, Kwang-Ho;Choi, Seung-Il;Song, Jae-Won;Kim, Jong-Woo;Yun, Byung-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.121-123
    • /
    • 2007
  • 본 논문에서는 Shunt capacitor와 OLTC가 함께 설치된 154kV 변전소에서 송출전압을 고려한 두 기기의 협조제어 시스템에 대해 연구하고자 한다. Shunt Capacitor는 전압제어뿐 아니라 외란이 발생할 경우 안정도 제어에 매우 유용한 중요 기기이다. 그러나 비상시 안정도 제어에 참여하기 위해서는 평상운전 시 적정한 운전여유를 확보하고 있어야 한다. 또한 Shunt capacitor와 OLTC의 특성과 상호작용을 고찰하여 Shunt Capacitor의 무효전력 보상 여유를 유지하고 전압의 변동을 방지하면 OLTC의 탭동작을 최소화하여 고장의 요소를 방지하는 협조제어를 제안한다.

  • PDF

A New Volt/Var Control of Substation for Distribution Volt/Var Regulation (배전계통 전압/무효전력조정을 위한 새로운 전압/무효전력제어 방식)

  • Choi, Joon-Ho;Kim, Jae-Chul;Son, Hag-Sig;Im, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper we proposed the on line volt/var control schemes of the load Tap Changer (LTC) transformer and shunt capacitor bank for distribution volt/var regulation. In the existing volt/var control of the distribution substation, the voltage of feeders and var of distribution systems is mainly controlled by the LTC transformer tap position and on/off status of the shunt capacitor. The LTC and shunt capacitor bank has discrete operation characteristics and therefore it is very difficult to control volt/var at the distribution networks within the satisfactory levels. Also there is limitation of the operation times of the LTC and shunt capacitor bank because it is affects on their functional lifetime. The proposed volt/var control algorithm determine an optimal tap position of LTC and on/off status of shunt capacitors at a distribution network with the multiple feeders. The mathematical equations of the proposed method are introduced. Simple case study was performed to verify the effectiveness of the proposed method.

  • PDF

Cooperation Algorithms of LTC and SC for Distribution Volt/Var Regulation (배전계통 전압/무효전력 보상을 위한 LTC변압기와 SC의 협조운전 알고리즘)

  • Choi, Joon-Ho;Kim, Jae-Chul;Nam, Hae-Kon;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.399-402
    • /
    • 2003
  • In this paper, the on line volt/var control algorithms of the food Load Tap Changer (LTC) transformer and Shunt Capacitor(SC) are proposed for distribution volt/var regulation. In the existing volt/var control of the distribution substation, the voltage of feeders and var of distribution systems is mainly controlled by the LTC transformer tap position and on/off status of the shunt capacitor. The LTC and shunt capacitor bank has discrete operation characteristics and therefore it is very difficult to control volt/var at the distribution networks within the satisfactory levels. Also there is limitation of the operation times of the LTC and shunt capacitor bank because it is affects on their functional lifetime. The proposed volt/var control algorithm determine an optimal tap position of LTC and on/off status of shunt capacitors at a distribution network with the multiple feeders. The mathematical equations of the proposed method are introduced. Simple case study was performed to verify the effectiveness of the proposed method.

  • PDF

Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping

  • Park, Chul-Hue;Park, Hyun-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1650-1658
    • /
    • 2003
  • This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. The mechanism of the shunt damper is also described by considering a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam system with a negative capacitive shunting, the governing equations of motion are derived through the Hamilton's principle and a piezo sensor equation as well as a shunt-damping matrix is developed. The theoretical analysis shows that the piezo/beam system combined with a series and a parallel resistor-negative capacitor branch circuit developed in this study can significantly reduce the multiple-mode vibration amplitudes over the whole structural frequency range.

Long-term Shunt VAr Planning using Optimal Power Flour (OPF를 이용한 중장기 전력계통 조상설비 계획수립)

  • Ryu, Heon-Su;Bae, Ju-Cheon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.301-303
    • /
    • 2005
  • This paper presents long-term shunt capacitor planning using optimal power flow. OPF allows the planning engineer to find feasible solution with minimal amount of engineering time. We used OPF for Shunt capacitor planning to get an optimal solution. The result of OPF is compared to the analysis by the conventional loadflow method and it is proved that OPF gives more cheaper and better planning solution. With the result, we analyzed the operational perspective for the reactive power supply and demand.

  • PDF

Optimal Control of UPFC and Switched Shunt Capacitor by Using Genetic Algorithm (GA를 이용한 UPFC와 전력용 콘덴서의 최적 제어)

  • Kim, Hak-Man;Kim, Jong-Yul;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.9-11
    • /
    • 2003
  • In power system planing and operation, voltage and reactive power control are very important. The voltage deviation and system losses can be reduced through control of reactive power sources. In general, there are several different reactive power sources, we used UPFC and switched shunt capacitor to improve the voltage profile and to reduce system losses in this study. Since there are many switched shunt capacitors in power system, so it is necessary to coordinate these switched shunt capacitors. In this study, Genetic Algorithm(GA) is used to find optimal coordination of UPFC and switched shunt capacitors in a local area of power system. In case study, the effectiveness of the proposed method is demonstrated in KEPCO's power system. The simulation is performed by PSS/E.

  • PDF

Improvement of the Protection Algorithm Based on Voltage Difference Method for Detecting Arcing Faults within 22.9kV Shunt Capacitor Banks (22.9kV급 병렬 커패시터 뱅크 내부의 아크 고장 판별을 위한 전압차동 보호 알고리즘의 개선 방안)

  • Lim Jung-Uk;Kwon Young-Jin;Kang Sang-Hee;Yuk Yoo-Kyoung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents a refined protection algorithm of the unfused 22.9kV shunt capacitor banks in grounded wye connection to improve the existing algorithm using the voltage difference method. It is difficult to detect ground faults with arc near the input points or ground faults near the grounding point by the existing algorithm using only the voltage balanced relay. This paper shows that ground faults with arc near the input point can be detected by harmonics analysis of the differential voltage and that it has no impact of harmonics out of nonlinear loads which have the quantitative influence on capacitor banks. Thus the proposed method using harmonics analysis can be a proper detection method. In case of ground faults near the grounding point, an OVGR is being added recently and its validity is verified in this paper. The proposed method is applied to a 22.9kV example system and is verified that the proposed algorithm can detect clearly faults which are not easy to detect by the existing method.

Verification of Controlled Closing Method for Unearthed Shunt Capacitor Banks by Simulation (비접지 분로 콘덴서 뱅크의 투입제어방식에 대한 시뮬레이션 검증)

  • 이우영;박경엽;정진교;김희진
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.448-453
    • /
    • 2003
  • In this paper the controlled closing algorithm of the circuit breaker for isolated capacitor banks is proposed. The characteristics of circuit breakers such as RDDS(rate of decrease of dielectric strength) and a mechanical operating tolerance should be also taken into account to locate contact touch instants around voltage zero. The analysis results on the voltages across circuit breaker terminals upon closing operation play an important roles to describe the suggested method. The simulations carried out in order to verify the performance of this method show that the closing instants obtained from the proposed method provide a good suppression effect on the closing transients for both single and back-to-back capacitor banks.