• Title/Summary/Keyword: Shunt resistance

Search Result 112, Processing Time 0.025 seconds

Computational Study on the Hemodynamics of the Bypass Shunt Directly Connecting the left Ventricle to a Coronary Artery

  • Shim Eun Bo;Lee Byung Jun;Ko Hyung Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1158-1168
    • /
    • 2005
  • A shunt from the left ventricle to the left anterior descending artery is being developed for coronary artery occlusive disease, in which the shunt or conduit connects the the left ventricle (LV) with the diseased artery directly at a point distal to the obstruction. To aid in assessing and optimizing its benefit, a computational model of the cardiovascular system was developed and used to explore various design conditions. Computational fluid dynamic analysis for the shunt hemodynamics was also done using a commercial finite element package. Simulation results indicate that in complete left anterior descending artery (LAD) occlusion, flow can be returned to approximately 65% of normal, if the conduit resistance is equal for forward and reverse flow. The net coronary flow can increase to 80% when the backflow resistance is infinite. The increases in flow rate produced by asymmetric flow resistance are enhanced considerably for a partial LAD obstruction, since the primary effect of resistance asymmetry is to prevent leakage back into the ventricle during diastole. Increased arterial compliance has little effect on net flow with a symmetric shunt, but considerably augments it when the resistance is asymmetric. The computational results suggest that an LV-LAD conduit will be beneficial when the resistance due to artery stenosis exceeds 27 PRU, if the resistance is symmetric. Fluid dynamic simulations for the shunt flow show that a recirculating region generated near the junction of the coronary artery with the bypass shunt. The secondary flow is induced at the cutting plane perpendicular to the axis direction and it is in the attenuated of coronary artery.

Resistance Distribution in Thin Film Type SFCL Elements with Shunt Layers of Different Thicknes

  • Kim, Hye-Rim;Hyun, Ok-Bae;Lee, Seung-Yup;Yu, Kwon-Kyu;Kim, In-Seon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.41-45
    • /
    • 2003
  • Resistance distribution in thin film type SFCL elements of different shunt layer thickness was investigated. The 300 nm thick film of 2 inch diameter was coated with a gold layer and patterned into 2 mm wide meander lines. The shunt layer thickness was varied by ion milling the shunt layer with Ar ions, and also by having the shunt layer grown in different thickness. The SFCL element was subjected to simulated AC fault current for measurements. It was immersed in liquid nitrogenduring the experiment. The resistance distribution was not affected by the shunt layer thickness at applied voltages that brought the temperature of the elements to similar values. This result could be explained with the concept of heat transfer from the film to the surroundings. The resistance distribution was independent of the shunt layer thickness because thick sapphire substrates of high thermal conductivity dominated the thermal conductance of the elements.

Electrical Properties of Temperature Coefficient of Resistance and Heat Radiation Structure Design for Shunt Fixed Resistor (저항 온도계수와 방열 구조설계에 따른 션트 고정 저항의 전기적 특성)

  • Kim, Eun Min;Kim, Hyeon Chang;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.107-111
    • /
    • 2018
  • In this study, we designed the temperature coefficient of resistance (TCR) and heat radiation properties of shunt fixed resistors by adjusting the atomic composition of a metal alloy resistor, and fabricated a resistor that satisfied the designed properties. Resistors with similar atomic composition of copper and nickel showed low TCR and excellent shunt fixed resistor properties such as short-time overload, rated load, humidity load, and high temperature load. Finally, we expect that improved sensor accuracy will be obtained in current-distribution-type shunt fixed resistor for IoT sensors by designing the atomic composition of the metal alloy resistor proposed in this work.

A Method of Reducing a Tolerance of a Shunt Resistor for Balance of the Battery Cell to Improve a Precision of BMS (BMS 정밀도 향상을 위한 셀 밸런싱용 션트 고정저항의 허용오차 저감 방법)

  • Kim, Eun-Min;Son, Mi-Ra;Kang, Chang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1055-1061
    • /
    • 2018
  • Recently, due to the rapid development of electric vehicle and energy storage system, it is emphasized for battery management system to be needed and to be improved. BMS carries out various movement for optimization the use of the energy and safe use of secondary battery, these movement of BMS start at high wattage shunt fixed resistor which performs a function for detecting current among the BMS components. In addition, for the safe operation of secondary battery, the reliability of current voltage variation detected from shunt should be secured, and for corresponding characteristics, the quality of Temperature coefficient of resistance for BMS shunt and the quality of Thermo electromotive force all must be excellent. For these reasons, this study comes up with the stabilization plan for thermo electromotive force and temperature coefficient of resistance of BMS shunt resistor which is key to secondary battery operation.

Characterization of EFG Si Solar Cells

  • Park, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.1-10
    • /
    • 1996
  • Solar cells made of the edge-defined film-fed growth Si are characterized using current-voltage, surface photovoltage, electron beam induced current, electron microprobe, scanning electron microscopy, and electron backscattering. The weak temperature dependence of the I-V curves in the EFG solar cells is due to a voltage variable shunt resistance giving higher diode ideality factors than the ideal one. The voltage variable shunt resistance is modeled by a modified recombination mechanism which includes carrier tunneling to distributed impurity energy states in the band gap within the space-charge region. The junction integrity and the substrate quality are characterized simultaneously by combining I-V and surface photovoltage (SPV) measurements. The diode ideality factors and the surface photovoltages characterize the junction integrity while the SPV diffusion lengths characterizes the substrate quality. Most of the measured samples show the voltage variable shunt resistance although how serious it is depends on the solar cell efficiency. The voltage variable shunt resistance is understood as one of the most important factors of the degradation of EFG solar cells.

  • PDF

Precise Measurement of High Current Shunt Resistance (대전류 분류기 저항의 정밀측정)

  • Kim K.-T.;Han K.-S.;Kwon S.-W.;Kim M.-S.;Jeong J.Y.;Kim I.S.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.403-406
    • /
    • 2005
  • Precise measurement of extremely low resistance shunt is important for characterization and calibration of high current instruments. We tested resistance measurement method for extremely high current shunt (up to 140 kA), where resistance is determined by precise measurement of voltage drop at 10 A test current in the frequency range of 40 Hz to 10 kHz. For the extremely low ac voltage to be precisely measured, a verification of the measurement method was also carried, where the inherent noise is systematically evaluated. The measurement uncertainty was estimated to be $1\;\%\;at\;95\;\%$ confidence level (k=2) for about 50 $\mu\Omega$.

Evaluation Technique of Burden for Current Transformer using Current Transformer Comparator and Precise Shunt Resistor (전류변성기 비교기와 정밀션트저항을 이용한 전류변성기용 부담의 평가기술)

  • Lee, Sang-Hwa;Kang, Jeon-Hong;Kim, Myung-Soo;Jung, Jae-Kap
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.250-256
    • /
    • 2006
  • Both ratio error and phase angle error in current transformer(CT) depend critically on values of CT burden. Thus, precise measurement of CT burden is very important for the evaluation of CT. A method for the measurement of CT burden has been developed by employing the portable shunt precise resistor with negligible AC-DC resistance difference less than $10^{-5}$. The burden value(value and power factor) can be calculated from resistance and reactance obtained by measuring the change of ratio error and phase angle error caused by the change of shunt resistor. The uncertainty for the method is evaluated and found to be abut 2 %.

Pd Shunt Resistor for Josephson Junction : Fabrication and Dynamic Simulation (Pd Shunt저항의 제작 및 동력학특성 조사)

  • 김규태;남두우;이규원;유광민
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.143-145
    • /
    • 2003
  • External shunt resistor is used in Nb/AlOx/Nb Josephson junction which is basic component of RSFQ circuit. This is to increase damping and to make the so called 'self-reset' optimized for high speed operation. In this study, we fabricated and investigated sheet resistance of Pd and PdAu thin film, and simulated the inductance effect of the shunt resistor to the Josepshon junction dynamics.

  • PDF

A study on the shunt effect in resistance spot welding (저항점 용접에 있어서 Shunt영향에 대한 연구)

  • Boo, Kwang-Seok;Cho, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.39-54
    • /
    • 1986
  • One of the important factors in practical welding situations is shunt effect which deteriorates weld quality due to a shunt current which flows in the exis- ting spot. Previously, this effect has not been analytically investigated, since the mechanism of shunt effect shows very complicated phenomena in the thermal and electrical behavior. In this paper this effect is extensively studied through theoretical and experimental analysis. The theoretical results obtained from a numerical analysis of the modelling of shunt effect are compared with experimental ones. Both results show good agreement and represent well the mechanism of shunt effect.

  • PDF

Hemodynamics of a Connecting conduit Between the Left Ventricle and the Left Decending Coronary Artery

  • Shim, Eun-Bo;Sah, Jong-Yub
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.20-29
    • /
    • 2003
  • A new treatment for coronary artery occlusive disease is being developed in which a shunt or conduit is placed directly connecting the left ventricle with the diseased artery at a point distal to the obstruction. To aid in assessing and optimizing its benefit, a computational model of the cardiovascular system was developed and used to explore various design conditions. Simulation results indicate that in complete LAD occlusion, flow can be returned to approximately 65% of normal if the conduit resistance is equal for forward and reverse flow, increasing to 80% in the limit in which backflow resistance is infinite. Increases in flow rate produced by asymmetric flow resistance are considerably enhanced in the case of a partial LAD obstruction since the primary effect of resistance asymmetry is to prevent leakage back into the ventricle("steal") during diastole. Increased arterial compliance has little effect on net flow with a symmetric shunt, but leads to considerable augmentation when the resistance is asymmetric. These results suggest that an LV-LAD conduit will be beneficial when stenosis resistance(Rst) > 27 PRU if resistance is symmetric.

  • PDF