• Title/Summary/Keyword: Side Damper

Search Result 26, Processing Time 0.023 seconds

Control of Damping Forces by Side Clearance in Leaf Spring Damper (겹판스프링댐퍼에서 측면틈새에 의한 감쇠력 조절)

  • 김종수;김상도;제양규
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • This paper describes that the leaf spring damper (LSD) developed by authors can be controled by side clearance between side covers and leaf springs. The test rig and two prototype dampers with different side clearance were manufactured. Experiments were performed to investigate the effects of side clearance on the damping of the leaf spring damper. The stiffness and damping coefficients are obtained from the displacements and the reaction forces generated by rotating the eccentric shaft. All dynamic coefficients are plotted with the excitation frequency which is adjusted by rotating speed of the shaft.

Control of Damping Forces by Side Clearance in Leaf Spring Damper (겹판스프링댐퍼에서 측면틈새에 의한 감쇠력 조절)

  • 김종수;김상도;제양규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.285-290
    • /
    • 1999
  • This paper describes that the leaf spring damper(LSD) developed by authors can be controled by side clearance between side cover and leaf spring. The test rig and two prototype dampers with different side clearance were manufactured. Experiments were performed to investigate the effects of side clearance on the damping of leaf spring damper. The stiffness and damping coefficients are obtained from the displacements and the reaction forces generated by rotating the eccentric shaft. All dynamic coeffficients are plotted with the excitation frequency which is adjusted by rotating speed of shaft.

  • PDF

Performance Experiment of H-120 Class Fire Damper for Offshore (해양플랜트용 H-120 등급 방화 댐퍼의 성능 실험)

  • Park, Chang-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.425-430
    • /
    • 2017
  • This study propose CAE analysis of fire damper and design of the damper control system. Through the design of the damper system for ANSYS-CFX heat transfer. As a result of the analysis, continuance equation of the damper control. Climate system. Finaily, We have obtained a fire damper solution by using orthogonal array. The fire damper of the set of fixture and alveolus are made by using a CAE software. Also, the optimum design offshore structures. The new H-120 class fire damper was designed. In the near future, fire resistance test was carried out to obtain class H-120 thermal insulation of fire dampers according to a hydrocarbon fire conditions. The test results showed that the insulation of the damper blade was an important factor in the fireproof performance of fire dampers concerning the coaming length minimum 500mm on the unexposed side as specified test standard.

Fireproof Performance Study of ICT Fire Damper by Using Experimentalmethode (실험적 방법에 의한 ICT 파이어 댐퍼의 내화성능연구)

  • Hur, Nam-Soo;Kim, In-Whan;Jang, Sung Cheol;Kim, Jae-Woong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.82-89
    • /
    • 2014
  • In this paper, fire resistance test was carried out to obtain class H-120 thermal insulation of fire dampers according to a hydrocarbon fire conditions. Specimens were fabricated three different types according to the change of the insulation system applied to damper blade and coaming which were measured surface temperature by performing the fire resistance test. As a test result, specimen-1, 2 of an uninsulated damper blade were exceeded thermal insulation acceptance criteria at 21 minutes, 46 minutes respectively, but specimen-3 of an insulated damper blade was satisfied thermal insulation acceptance criteria during 120 minutes. The test results showed that the insulation of the damper blade was an important factor in the fireproof performance of fire dampers concerning the coaming length minimum 500 mm on the unexposed side as specified test standard.

Ride Quality Evaluation of Seat Suspension Adopting Controllable Damper (제어 가능한 댐퍼를 적용한 시트 현가장치의 승차감 평가)

  • Han, Young-Min;Min, Chul-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1199-1205
    • /
    • 2011
  • In the present work, a seat suspension system adopting semi-active damper is evaluated for driver's ride quality. A cylindrical type of ER(electrorheological) damper is designed and manufactured for the seat suspension of heavy vehicles. The governing equation is derived under consideration of human vibration. A sliding mode controller is then synthesized and experimentally realized on the manufactured ER seat suspension while a driver is sitting on the controlled seat. Ride quality is evaluated by fatigue decreased proficiency boundary, vibration dose value and crest factor utilizing weighted-acceleration according to ISO2631.

Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in Power Plant Boilers with FGR System (FGR 시스템 공력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향)

  • Bae, Myung-Whan;Jung, Kwong-Ho;Choi, Seung-Chul;Cho, Yong-Soo;Kim, Yi-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1686-1691
    • /
    • 2004
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air(OFA) damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_{x}$ emissions. To activate the combustion, the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$ , and the OFA with 0 to 20% into the flame is supplied, as the combustion air supplied to burner is reduced. It is found that the fuel consumption rate divided by evaporation rate does not show an obvious tendency to increase or decrease with rising the FOR rate, and $NO_{x}$ emissions are decreased, at the same OF A damper opening, as FOR rates are elevated and boiler loads are dropped.

  • PDF

An experimental study on the fireproof performance of fire damper in accordance with insulation conditions on the coaming and blade (코밍 방열 두께 및 블레이드 방열 유무에 따른 방화 댐퍼의 내화성능에 관한 실험적 연구)

  • Choi, Tai-Jin;Kim, Joung-Sik;Choi, Kyeong-Kwan;Lim, Young-Soo;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.431-437
    • /
    • 2013
  • In this paper, Fire resistance test was carried out to obtain class H-120 thermal insulation of fire dampers according to a hydrocarbon fire conditions. Specimens were fabricated three different types according to the change of the insulation system applied to damper blade and coaming which were measured surface temperature by performing the fire resistance test. As a test result, specimen-1, 2 of an uninsulated damper blade were exceeded thermal insulation acceptance criteria at 21 minutes, 46 minutes respectively, but specimen-3 of an insulated damper blade was satisfied thermal insulation acceptance criteria during 120 minutes. The test results showed that the insulation of the damper blade is an important factor in the fireproof performance of fire dampers concerning the coaming length minimum 500 mm on the unexposed side as specified test standard.

Optimal Design of Hybrid Control System through Inter-Building Connection (빌딩간 연결을 통한 복합제어시스템의 최적설계)

  • Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.81-88
    • /
    • 2017
  • This study deals with the optimal design of a hybrid control system composed of a combination of active control system and passive control system for effective seismic performance improvement of two adjacent structures. The proposed hybrid control system adopts a configuration of installing an active control device in one building and connecting two adjacent structures with a passive control device so that the one-side active control force can be bi-directionally applied to both buildings through the passive connecting devices. In order to derive the optimal performance of the proposed system, the design parameters of the passive and active control systems were searched using the genetic algorithm. Numerical simulations of 10-story and 8-story buildings have been performed to verify the effectiveness of the proposed technique. For the purpose of comparison, the conventional independent control system with two identical active control systems being installed separately for each structure was also optimally designed and its seismic response has been evaluated as well. From the comparative results of the two control systems, it is demonstrated that the proposed hybrid control system requires larger control force for its one-side active control device than the conventional independent control system does for each of both-side active devices, but quite less than the total control force required for both-side devices of the independent control system, while maintaining similar seismic performance. Therefore, the proposed system is more economical and reliable than the conventional independent control system with two identical active devices.