• Title/Summary/Keyword: Silicafume

Search Result 14, Processing Time 0.033 seconds

The Chloride Ion Diffusion Characteristics of High Performance Lightweight Concrete Using Metakaolin (메타카올린을 사용한 고성능 경량 콘크리트의 염소이온 확산 특성)

  • Lee, Changsoo;Kim, Youngook;Nam, Changsik
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 2011
  • The objectives of this study is replaced Silicafume with Metakaolin that is used to lightweight concrete to better performance. So, this study made high-performance lightweight concrete using Metakaolin and characteristics of the fundamental properties and chloride ion diffusion. Consequently, it is compressive strength and chloride ion penetration resistance is lower than lightweight concrete using Silicafume, the performance of compressive strength contrast Silicafume is about 88 to 95%. Also, this study got a content result because the chloride ion penetration resistance showed the performance in around 80 to 90%. As a result, this study insist that replacement ratio of Metakaolin is suitable for 10 to 15%.Silicafume and Metakaolin have similar characteristics. In addition, it is similar to the performance of alternative materials is possible.

An Experimental Study on Quality Properties of High Strength Concrete by the Replacement ratio Meta-kaolin Usable as Substitutes of Silica-fume (실리카흄 대체재로 활용 가능한 메타카올린의 치환율에 따른 고강도 콘크리트의 품질특성에 관한 실험적 연구)

  • Lee, Seung-Min;Lee, Ji-Hwan;Lee, Jong-Suk;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.333-336
    • /
    • 2008
  • As the high-rise building increase due to the gravitation of population to big cities recently, it requires high quality and high performance of Concrete. As a result, people are keenly interested in Meta-kaolin as new admixture favorable from an economic perspective, which has strength and endurance with admixture at the same level like Silicafume. Accordingly, as to Meta-kaolin, this study was to set by three levels like domestic one, foreign one, and Silicafume, the waterbinding material ratio 25%, and four level substitute like 0, 10, 20, and 30(%) in order to compare and analyze the quality characteristics of high-strength concrete according to the substitute of Meta-kaolin applicable with replacement of Silicafume. As a result of performing experiment, as to the higher the additive amount of Superplasticizing agents in order to secure target liquidity was, the more the substitute in each admixture increased. This study had a tendency that the Silicafume increased the additive amount of Superplasticizing agents with high fineness compared with Meta-kaolin. In addition, the higher the substitute in each admixture was, the more its strength increased On the strength property, the higher the substitute in each admixture was, the more its strength increased. This study has found out that the Meta-kaolin has shown the better strength than the one of Silicafume. On the other hand, the relationship between the Compressive strength and Elastic coefficient has shown the similar formula suggested from ACI363.

  • PDF

Properties of High Strength Recycled Aggregate Concrete (고강도 영역의 재생골재 콘크리트의 물리적 특성)

  • 이세현;서치호
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.575-583
    • /
    • 2001
  • The purpose of this study is to present the method of utilizing the recycled aggregate that are obtained from waste concrete as the concrete aggregate. We manufactured the recycled aggregate concrete with compressive strength of over 300kgf/㎠ to increase its weaker strength than the normal concrete, and compared the physical features of the recycled aggregate concrete with that of the normal concrete. As a result of the study, the mechanical performances such as compressive and tensile strength were generally reduced as the mixing rate of the recycled aggregate increased; however, it was possible to manufacture the concrete with the compressive strength of 300∼600kgf/㎠ using the adequate mixing material such as unit quantity of cement, compounding water and silicafume. However, a continuous study on long-term durability performance is required to manufacture and utilize the recycled aggregate concrete for the structure.

Effect of Microstructure on the Prooperties of High Strength Hardened Cement Paste (II) (고강도 시멘트 경화체의 특성에 미치는 미세구조의 영향 (II))

  • 김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1034-1042
    • /
    • 1990
  • Investigation for the preparation of high strength hardened cement paste using ordinary portland cement, hydroxypropyl methyl cellulose(HPMC) with various admixtures was carried out. The cement paste was mixed with 0.1 of water cement ratio by twin roll mill and cured 60 days in humidity chamber. When the quartz powder or white cement was added to the paste, the flexural strength was 900∼1000kg/㎠ and the Young's modulus was 8∼9×105kg/㎠. When the silicafume was added, the flexural strength was 800kg/㎠ and the Young's modulus was 6×105kg/㎠.

  • PDF

An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part I. Workability of Fresh Concrete) (플라이애시 및 실리카흄을 사용한 고강도유동화콘크리트의 공학적 특성에 관한 실험적 연구 (제1보, 아직 굳지않은 콘크리트의 시공성 검토))

  • 김진만;이상수;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.161-166
    • /
    • 1994
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admixture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete, it is presented that using admixtures like flysh and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part 2. Engineering Properties of Hardened concrete) (플라이애시 및 실리카흄을 사용한 고강도유동화 콘크리트의 공학적 특성에 관한 실 험적 연구 (제 2보. 경화콘크리트의 공학적 특성 검토))

  • 김진만;이상수;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.84-87
    • /
    • 1995
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admisture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete. it is presented that using admixtures like flyash and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

A Fundamental Study on the Workability and Engineering Properties of Silica-Fume High Strength Concrete (실리카 흄을 혼입한 고강도 콘크리트의 시공성 및 공학적 특성에 관한 기초적 연구)

  • 권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.29-34
    • /
    • 1990
  • Energy cries and availability have funded extensive research and numerous conferences. So, the idea of adding slags and pozzolans such as flyash to portland cement or portland cement concrete is widely practiced because it helps to reduce cost and conserve energy, resources and the environment. Recently, Silicafume which is the industrial by-product of electric arc furnaces is also widely studied for achieving high strength concrete. It is the aim of this study to provide the fundamental data on the workability and engineering proper of high strength concrete containing flyash and silica fume comparing with plain concrete for the practical use and research data accumulation of a new technique for achieving high strength concrete.

  • PDF

Effect of Micro-aggregate and Admixtures on the Properties of High Strength Hardened Cement Paste (고강도 시멘트 경화체의 특성에 미치는 미세골재 및 혼화재료의 영향)

  • 김정환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.149-157
    • /
    • 1994
  • 보통 포틀랜드 시멘트와 수용성 고분자 물질인 hydroxy propyl methyl cellulose(HPMC), 미세골재 및 혼화재료를 사용하여 W/C=0.1이 되도록 물을 첨가하고 twin roll mill로 혼합 성형한 후 60일간 양생하여 고강도 시멘트 경화체를 제조하였다. 이 경화체에 대한 휨강도 및 파괴인성을 검토하였다. SiC 분말 및 백색시멘트를 첨가한 경우 휨강도는 약 100MPa정도, 탄성계수는 80-95GPa의 값을 나타내었다. 실리카흄을 첨가한 경우 휨강도는 80MPa, 탄성계수는 60GPa의 값을 나타내었다.

Influence of Blending Materials on C1- Diffusion and pH of Pore Solution in Cement Pastes (시멘트 경화체 중에서의 C1-의 확산과 세공용액의 pH에 미치는 혼화재의 영향)

  • 김남중;최상흘;정재동;한기성
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.97-106
    • /
    • 1992
  • Apparent diffusion coefficients of Cl- ions through hardened cement pastes(HCP), which were partly subs¬tituted blast furnace slag, fly ash and silicafume for ordinary Portland cement, were determined. Also. Cl- and OW concentration of pore solutions which were extracted from HCP and the capacities of the HCP to bind CI were determined. Diffusion coefficients of Cl- ions through HCP were increased with water cement ratio(WfC), but decreased with addition of the blending materials. On the contrary, Cl- and OH concentration of the pore solutions were reduced by adding the blending materials.

Analysis of hydration of ultra high performance concrete (초고성능 콘크리트의 수화모델에 대한 연구)

  • Wang, Hai-Long;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF