• Title/Summary/Keyword: Silicone foam

Search Result 23, Processing Time 0.025 seconds

Preparation and characterization of poly(dimethylsiloxane) foam prepared by hydrogen condensation reaction (수소 축합 반응에 의한 폴리디메틸실록산 미세 발포체의 제조 및 물성분석 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.802-812
    • /
    • 2016
  • Silicone foam is very useful as flame resistant material for many industrial areas such as high performance gasketing, thermal shielding, vibration mounts, and press pads. A silicone foam was prepared through simultaneous crosslinking and foaming by hydrogen condensation reaction of a vinyl-containing polysiloxane (V-silicone) and a hydroxyl-containing polysiloxane (OH-silicone) with hydride containing polysiloxane (H-silicone) in the presence of platinum catalyst and imorganic filler at room temperature. This is more convenient process for silicone foam manufacturing than the conventional separated crosslinking and foaming systems. Funtionalized silicones we used in this experiment were consisted with a V-silicone containing 1,0 meq/g of vinyl groups and a viscosity of 20 Pa-s, an OH-silicone with 0.4 meq/g of hydroxyl groups and a viscosity from 50 Pa-s, and an H-silicone containing 7.5 meq/g of hydride groups and a viscosity of 0.06 Pa.s. The effects of compositions of functionalized silicones and additives, such as catalyst and filler on the structure and mechanical properties of silicone foam were studied. 0.5 wt% of Pt catalyst was enough to accelerate the foaming rate of silicone resins. The addition of OH-silicone with lower viscosity accelerates the initial foaming rate and decreases the foam density, but the addition of V-silicone with lower viscosity reduces the tensile strength as well as the elongation. The final foam density, tensile strength, and elogation of silicone foam prepared under the SF-3 condition increase maximum to $0.58g/cm^3$, $3,51kg_f/cm^2$, and 176 %, repectively. We found out the filler alumina also played an important role to improve the mechanical properties of silicone foams in our foaming system.

Foam Application for Water and Oil Repellent Finishes (거품을 이용한 발수 발유가공)

  • 이정민;배기서;노덕길;김병미;이성애
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.125-133
    • /
    • 1993
  • This study was to investigate the application of foam finishing technology (FFT) for the silicone finishing of cotton fabrics and the tluorochemical finishing of polyester fabrics. The repellency properties, soil resistance properties and selected physical properties were demonstrated and compared the foam finishing with the conventional padding application. Amino-funetional silicone prorided better durability than epoxy-functional silicone and conventional reactive silicone after three launderings. Foam finishing fabrics improved stiffness but showed lower or equivalent water and oil repellency properties, soil resistance properties, tearing strength and abrasion resistance than those of the fabrics treated by conventional padding process. But, it was evident that the foam application of silicone and fluorochemical finishes to the fabrics were feasible.

  • PDF

Cryogenic Machining of Open-Cell Silicone Foam (액화질소를 이용한 오픈 셀 실리콘 폼의 냉동 절삭조건 최적화)

  • Hwang, Jihong;Cho, Kwang-Hee;Park, Min-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • Open-cell silicon foam is difficult to cut using conventional machining processes because of its low stiffness. That is, open-cell silicon foam is easily pressed down when the tool is engaged, which makes it difficult to remove the material in the form of chip. This study proposes an advanced method of machining open-cell silicon foam by freezing the material using liquid nitrogen. Furthermore, the machining conditions are optimized to maximize the efficiency of material removal and minimize the usage of liquid nitrogen by conducting experiments under various machining conditions. The results show that open-cell silicone foam products with free surface can be successfully machined by employing the proposed method.

Mechanical and Thermal Properties of Environmentally Benign Silicone Foam Filled with Wollastonite

  • Kim, Yongha;Joeng, Hyeonwoo;Lee, Kyoung Won;Hwang, Sosan;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.300-305
    • /
    • 2020
  • In recent times, polymeric foams have been popularly used in various applications. To meet the demand for these applications, polymer foams with excellent mechanical and thermal properties are required. In particular, silicone foam has gained significant attention owing to its superior thermal properties and low density. In this study, the mechanical and thermal properties of silicone foams filled with wollastonite were investigated. A maximum tensile strength of 98.3 kPa was obtained by adding 15 phr of wollastonite. The specific gravity did not exhibit a marked difference up to 10 phr, but it increased substantially above 15 phr wollastonite. Thermogravimetric analysis indicated that adding wollastonite to the silicone foam increased both the amount of residue and the thermal decomposition temperature. The morphologies of the silicone foams filled with wollastonite were observed by scanning electron microscopy.

Studies on the Water Resistance Properties of the Polyurethane Foam Silicone Foal Control Agent according to the Type of Silicone Foam Stabilizer (실리콘 정포제의 종류에 따른 폴리우레탄 폼 지수제의 내수성 특성에 관한 연구)

  • Kim, Keun-Hur;Kim, Hyun-Min;Kim, Sung-Rae;Kim, Young-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.60-66
    • /
    • 2016
  • Polyurethane foam index a of the cell structure and the absorption change by using the foam stabilizer of six to investigate the polyurethane foam index producing the agent to the siloxane analyzed with silicon foam stabilizer with FE-SEM in accordance with the characteristics of the silicon-based foam stabilizer cell structure of the primary DC-193 on the chain ends is PO n dog bond, DC-2585, DC-5125, DC-198 has been confirmed as a close cell, silicone surfactant is combined EO n dog to a siloxane main chain terminus DC-5043 and DC-5598 that appeared to open cell structure. In addition, most absorption of the DC-5043 appeared was the size of the open cell greatest formed by the absorption of the cell structure change this absorption of the size of the close cell most detailed and uniform DC-193 appeared small household water-resistant best many showed. The performance test of the water was found to be excellent.

The Effects of HLB Value of the Surfactants Added in the Silicon Oil Emulsion Antifoamer on the Antifoaming Ability (실리콘오일 에멀젼 소포제 조성에 있어서 유화제의 HLB가 소포성능에 미치는 영향)

  • Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.223-232
    • /
    • 2010
  • The effects of HLB value of nonionic mixed surfactants on the stability and antifoaming ability for silicon oil type emulsions were studied. To obtain a stable silicone emulsions, a higher HLB values and higher content of surfactants were preferred. To obtain a good antifoaming ability, however, a lower HLB value (more hydrophobic) and a lower content of the surfactants were preferred. It was observed, at lower HLB values(8 or 9), that the silicone oil drops were spreaded on the foam surface and effectively reduced the surface tension. And the spreading phenomena presumably acted as an antifoaming mechanism. Therefore, a higher hydrophobicity of the silicone oil emulsion resulted in a higher ability of antifoaming action.

A Study on the Synthesis and Mechanical Characteristics of NATM Resin (HATM 수지의 합성 및 기계적 특성에 관한 연구)

  • Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.355-361
    • /
    • 2005
  • The physical characteristics of polyurethane were examined by SEM, FT-IR tensile strength and mole % [NCO/OH]. Growing concerns in the environment-friendly architecture and public works have led to the development of solvent-free formulations that can be cured and foamed in air. Compared with general packing materials, this resin is much stronger in intensity and much longer in durability. Polyurethane foam resins were mainly composed of polyol, MDI, silicone surfactant, fillers, catalyst and blowing agent. The rigid foam of polyurethane in mechanical characteristics were due to chain extender and the increase of mole % [NCO/OH]. The change in the microstructure of polyurethane should be taken into account when considering the process of construction and durability through the polyurethane polymer resin in lots of industries.

Effects of Silicone Surfactant on the Cell Size and Thermal Conductivity of Rigid Polyurethane Foams by Environmentally Friendly Blowing Agents

  • Han, Mi-Sun;Choi, Seok-Jin;Kim, Ji-Mun;Kim, Youn-Hee;Kim, Woo-Nyon;Lee, Heon-Sang;Sung, Joon-Yong
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • Rigid polyurethane foams (PUF)s were synthesized with environmentally friendly blowing agents such as a cyclopentane/distilled water (10.0/1.0, pphp) mixture and distilled water only for four different silicone surfactants having different silicone/polyether ratios. An attempt was made to reduce the thermal conductivities of the PUF samples by varying the concentration and the silicone/polyether ratio of the various silicone surfactants. The scanning electron microscopy (SEM) results indicated an optimum concentration of the silicone surfactant of about 1.5 to 2.5 phpp for various surfactants to reduce the cell size and lower the thermal conductivity. The silicone surfactant having a higher silicone/polymer ratio showed a smaller cell size and, therefore, demonstrated the lower thermal conductivity of the PUF samples. From the relation between the thermal conductivity and the cell size of the PUF samples, the smaller cell size improved the thermal insulation property of the rigid PUF for both the PUF samples blown by the cyclopentane/distilled water (10.0/1.0, pphp) mixture and distilled water only. If the blowing agent is fixed, then the cell size is an important factor to decrease the thermal conductivity of the PUF samples. These results indicated that rigid PUF samples having lower thermal conductivity can be obtained by choosing a silicone surfactant containing a higher silicone/polyether ratio, as well as an optimum content of the surfactant.

Synthesis of Silicone Surfactant for Antifoamer (저기포성 실리콘 계면활성제의 합성)

  • Jeong, Noh-Hee;Son, Hyun-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • The hydrosilylation is an addition reaction of Si-H bond to unsaturated double bonds, which provides a convenient mechanism to synthesize poly(dimethylsiloxane-co-methylsiloxane)copolymer having siloxy units in polymer backbone. In this study, Poly(dimethylsiloxane-co-methylsiloxane) copolymer was synthesized through the polymerization reaction of cyclopentasiloxane with poly(methyl-hydrogen) siloxane. Silicone-hydrogen functional group of the poly(dimethylsiloxane-co-methylsiloxane) copolymer was substituted to the alkyl groups by hydrosilylation. And their structure was analyzed with FT-IR, H-NMR and GPC instruments, respectively. Surface tension of the synthetic compounds is increased from 22dyne/cm to 25dyne/cm according to increase additional EO moles. The cmc which was evaluated by surface tension was ranged $10^{-5}$ to $10^{-4}mol/L$ and it was decreased according to increase of dimethyl siloxyl content. HLB number of these surfactants was evaluated 9.5 to 11.5 range. These silicone surfactants is applied to self-emulsifier defoamer and personal care products as surface tension depressant, emulsifier, foam control agent.

The Research on the Development of Passenger Helmet to Prevent Head Trauma (두부 손상 보호를 위한 승객용 헬멧 개발 연구)

  • Lim, Jeong-Ku;Kweon, Ghi-Sun;Dodge, Robin E.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • Introduction : Head trauma is the main cause of death in aircraft crash. In a Michigan study of structurally survivable, fatal accidents, 80% of the fatally injured had received head trauma. We tried to develop a new helmet for passengers, and perform its efficiency test. Methods : An aircraft helmet requires an excellent protection against head trauma, lightness, and small volumes. In addition, it must be wearable, fire resistant, and non toxic when it is burning. We developed two new helmets made from silicone foam which met all theses requirements. One was thin (2.5cm), and the other was thick (6.3cm). These looked like a motorcycle helmet and had only a soft silicone as liner material without an outer hard shell. Therefore we can carry them easily inside aircrafts. The standard test for helmet is Snell's drop test. It measures the impact acceleration of head shaped metal wearing helmet during we drop it at certain heights. Impact sites were total 5 sites (front, back, right, left and top) for each helmet. All these sites were impacted twice. Results : The thickness of impact sites varied from 2.5cm to 6.3cm. The impact acceleration of 2.5cm thickness site when it was dropped from 1.0 meter was 379g. But, that of 6.3cm thickness site when it was dropped from 1.5 meter was only 163g. Unfortunately, both helmets didn't meet the Snell Standard for motorcycle helmets. Discussion : If we add suitable outer hard shell, and change its thickness and design, the efficiency will be increased. A study indicated that helmet could reduce the risk of head trauma up to 85%. We made helmet for passengers in aircraft crash for the first time. If we improve its weak points, it will decrease the frequency of head trauma in aircraft craft.