• Title/Summary/Keyword: Silver coating

Search Result 166, Processing Time 0.025 seconds

A Study on the Tribological Characteristics of Thermally Evaporated Silver Films Assisted by Atomic Mixing (원자혼합법으로 증착된 은 박막의 트라이볼로지적 특성에 관한연구)

  • 양승호;공호성;윤희성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.27-34
    • /
    • 2001
  • A new functionally gradient metal coating method using an atomic mixing technique was developed. In this work the effect of silver atomic mixing on the tribological characteristics of silver$.$ films. has been investigated experimentally. Atomic mixing was implemented by using the, bombardment .of accelerated Ar ions during the thermal evaporation coating process of silver films. Experiments were performed in dry conditions using a ball-on-disk test rig at a load range of 19.6 mN - 17.64 N and a sliding velocity of 20 mm/sec. Results showed that the life of functionally gradient silver coating was enhanced about 100 times more than that of thermally evaporated silver coating and 2 times more than that of IBAD silver coating. The functionally gradient. film also showed low friction and wear compared to those of the evaporated silver and

  • PDF

Synthesis of Nano-Colloidal Silica Coated with Silver (은을 코팅한 Nano-Colloidal Silica의 합성)

  • Lee, Joo-Heon;Lim, Yoon-Hee;Ham, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • The self assembled silver process and silver coating process after surface reforming for silica particle, were investigated to coat the silver to colloidal silica. The effects of silver amounts and reductant amounts on silver coating efficiencies were investigated. The silver coating process after surface reforming for silica particle using MPTS (3-Mercaptopropyl trimethoxysilane) and APTS (3-Aminopropyl trimethoxysilane), showed the higher coating efficiency and better antibacterial effect than the self assembled silver process.

An Experimental Study on the Frictional Behavior of Silver Coating Films at Sliding Surfaces (은 박막의 미끄럼 마찰거동에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.7-13
    • /
    • 1999
  • An experimental study was performed to discover the effect of silver coating on the frictional behavior of SM45C steel at sliding surfaces. Pure silver was coated the SM45C disk surfaces by a thermal evaporation method. Experiments using a pin-on-disk test-rig was performed under dry air and various humidity conditions. Friction coefficients increased to a high and unstable value after failure of coating, and friction coefficients increased with increasing the thickness of silver coated layer. But optimum coating thickness was not observed.

  • PDF

Facile Preparation of Silver Nanoparticles and Application to Silver Coating Using Latent Reductant from a Silver Carbamate Complex

  • Kim, Kyung-A;Cha, Jae-Ryung;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.505-509
    • /
    • 2013
  • A low temperature ($65^{\circ}C$) thermal deposition process was developed for depositing a silver coating on thermally sensitive polymeric substrates. This low temperature deposition was achieved by chemical reduction of a silver alkylcarbamate complex with latent reducing agent. The effects of acetol as a latent reducing agent for the silver 2-ethylhexylcarbamate (Ag-EHCB) complex and their blend solutions were investigated in terms of reducing mechanism, and the size and shape of silver nanoparticles (Ag-NPs) as a function of reduced temperature and time, and PVP stabilizer concentration were determined. Low temperature deposition was achieved by combining chemical reduction with thermal heating at $65^{\circ}C$. A range of polymer film, sheet and molding product was coated with silver at thicknesses of 100 nm. The effect of process parameters and heat treatment on the properties of silver coatings was investigated.

Preparation of silver stabilizer layer on coated conductor by continuous dip coating method using organic silver complexes (유기 은 착체 화합물을 코팅용액으로 사용하여 연속적인 담금코팅방법에 의한 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Ji-Cheol;Park, Sin-Keun;Kim, Byeong-Joo;Kim, Jae-Geun;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Silver stabilizing layer of coated conductor has been prepared by dip coating method using organic silver complexes containing 10 wt% silver as a starting material. Coated silver complex layer was dried in situ with hot air and converted to crystalline silver by post heat treatment in flowing oxygen atmosphere. A dense continuous silver layer with good surface coverage and proper thickness of 230 nm is obtained by multiple dip coatings and heat treatments. The film heat treated at $500^{\circ}C$ showed good mechanical adhesion and crystallographic property. The interface resistivity between superconducting YBCO layer and silver layer prepared by dip coating was measured as $0.67\;{\times}\;10^{-13}\;{\Omega}m^2$. Additional protecting copper layer with the thickness of $20\;{\mu}m$ was successfully deposited by electroplating. The critical current measured with the specimen prepared by dip coating and sputtering on same quality YBCO layer showed similar value of ~140 A and proved its ability to replace sputtering method for industrial production of coated conductor.

An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Silver Film (은 박막이 코팅된 베어링 표면의 구름 저항 거동 고찰)

  • 양승호;공호성;윤의성;권오관
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.101-110
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure silver coated 52100 bearing steel. Pure silver coatings ranging from 80 nm to several micrometers were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the influence of coating thickness on the tribological rolling behavior. The existence of optimum film thickness which revealed minimum rolling resistance was discovered. A careful analysis on the contact surfaces for the optimum film thickness has been performed. The contact patches produced by the transferred silver films played an important role for the rolling resistance to keep low.

  • PDF

An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Silver Film (은 박막이 코팅된 베어링 표면의 구름 저항 거동 고찰)

  • 양승호;공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.85-92
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure silver coated 52100 bearing steel. Pure silver coatings ranging from 80 nm to several micrometers were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the influence of coating thickness on the tribological rolling behavior. The existence of optimum film thickness which revealed minimum rolling resistance was discovered. A careful analysis on the contact surfaces for the optimum film thickness has been performed. The contact patches produced by the transferred silver films played an important role for the rolling resistance to keep low.

A Study on the Development of Solar Heat Proof Hat for Summer Field Work (하절기 방서용 농작업모 개발에 관한 연구)

  • Choi Jeong Wha;Jeong Young Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.4 s.36
    • /
    • pp.281-291
    • /
    • 1990
  • Experiment I and II had done to develop the solar heat proof hat for field work in the summer. In the experiment I physical characteristics of several fabrics was tested to determine which one Is proper to make the solar heat proof hat. On the base of above results in the experiment II three improved solar heat proof hat was deviced and tested solar heat proof effect and compared the existing summer working hat by wearing trials in the environmental chamber. The results obtained were as follows. 1. In the view of the physical characteristics of six fabrics (Blue T/C, White poplin, Vapor transfer silver coating nylon taffeta, No vapor trans(or silver coating nylon taffeta, Aluminum coating T/C, Microporous fabric), the light color T/C and no vapor transfer silver coating nylon ta(feta is proper to make improved solar heat proof working hat. 2. Three improved hats that are made of white T/C, grey T/C and no vapor transfer silver coating nylon taffeta have more solar heat proof effect than the existing summer working hat. 3. Among the three improved hats, the improved hat that is made of no vapor transfer silver coating nylon taffeta is most effective to proof the solar heat.

  • PDF

Preparation of Coating Film with Antibacterial and Antifogging Function on PET Substrate (PET 기재 위에 항균성과 김서림 방지 기능을 갖는 코팅 도막 제조)

  • Ho Chan Kwon;Ki Chang Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.439-445
    • /
    • 2023
  • In this study, silver nanoparticles were synthesized by reducing silver nitrate with PVA, and the solution prepared by adding carboxymethyl cellulose (CMC) to the silver nanoparticles was coated on a PET substrate to prepare a coating film with antibacterial and antifogging function. When the coating films were in contact with water vapor at 80 ℃, the uncoated PET substrate was blurred due to the scattering of light due to the occurrence of fog, while the coating film coated with silver nanosol with CMC remained transparent despite contact with water vapor, showing excellent antifogging function. In addition, the antibacterial properties of the coating films were measured by film adhesion method for Staphylococcus aureus, gram-positive bacteria, and Escherichia coli, gram-negative bacteria. The uncoated PET substrate showed a large number of colonies of Staphylococcus aureus and Escherichia coli, while the coating film coated with the silver nanosol greatly inhibited the growth of Staphylococcus aureus and Escherichia coli, resulting in excellent antibacterial effect.

ELECTROCHEMICAL STUDY OF ELECTROLESS PLATING OF SILVER

  • Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.447-451
    • /
    • 1999
  • Silver has the highest electrical conductivity of all metals and consequently this property is an attractive feature which makes it a leading candidate for use in electronic devices. The research conducted was focused primarily on the development of a process for obtaining a deposited silver-coating onto alumina, for applications related to electrical-conducting devices and, ancillarily, catalysts. Alumina balls and plane substrates were utilized for the investigation. The coating process employed an aqueous ammoniacal silver-nitrate electrolytes with a formaldehyde solution as the reductant. Modifying additives-an activator which would be expected to promote good deposition-characteristics onto the (dielectric) substrate and an inhibitor which would obviate homogeneous reduction (precipitation) of silver was observed when the activator-containing silver-electrolyte reductant constituents were combined. However, the silver-electrolyte/reductant system with inhibitor could be employed (at 8$0^{\circ}C$) to achieve a viable (subject to future research optimization) coating on alumina. The influence of the processing temperature on the deposition process was delineated during the course of the research. The morphology of the deposited-silver on the alumina balls was assessed by SEM imaging. A tape-peel test was employed, with the plane substrates, to semi-quantitatively characterize the adhesion to the alumina.

  • PDF